Current progress:
-
General
- Random color distortion (from SimCLR)
- Random Gaussian blur (from SimCLR)
- Random multi-crop (from SwAV)
- InfoNCE loss
- Momentum encoder
- Selective Kernel (SK) convolution layer (used in SimCLR v2)
- LARS optimizer
- Consine annealing with linear warmup scheduler
- Linear scheduler (for torch<=1.9)
- CSV logger
- TensorBoard logger
- Checkpoint saving and restoring
- Command line parameter parser
- YAML parameter parser
- PyTorch workflow encapsulation
- Dedicated evaluation script
- Detailed readme file
- Data Parallel
- Distributed Data Parallel
- Global batch normalization
- Shuffling batch normalization
-
Supervised baseline
- ResNet
- ViT
- CIFAR-10
- CIFAR-100
- ImageNet-1k
-
Self-supervised baseline
- SimCLR (contrastive, ResNet)
- MoCo v2 (contrastive, ResNet)
- MoCo v3 (contrastive, ViT)
- BYOL (non-contrastive, ResNet)
- DINO (self-distillation, ViT)
To be continued ...