aboutsummaryrefslogtreecommitdiff
path: root/libs/criteria.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2022-08-08 19:32:51 +0800
committerJordan Gong <jordan.gong@protonmail.com>2022-08-08 19:32:51 +0800
commitebb2f93ac01f40d00968daaf9a2ad96c24ce7ab3 (patch)
treecad5a186e9a5ccf9a9029974f77aa76aac391afd /libs/criteria.py
parentcbb7cd4248c8f125323c532bc7c3337c606d2203 (diff)
Optimize batching
Diffstat (limited to 'libs/criteria.py')
-rw-r--r--libs/criteria.py10
1 files changed, 5 insertions, 5 deletions
diff --git a/libs/criteria.py b/libs/criteria.py
index 6954cf3..baa36ce 100644
--- a/libs/criteria.py
+++ b/libs/criteria.py
@@ -8,17 +8,17 @@ class InfoNCELoss(nn.Module):
super().__init__()
self.temp = temp
- def forward(self, feat1: Tensor, feat2: Tensor) -> tuple[Tensor, Tensor]:
- bz = feat1.size(0)
- feat1_norm = F.normalize(feat1)
- feat2_norm = F.normalize(feat2)
+ def forward(self, feature: Tensor) -> tuple[Tensor, Tensor]:
+ bz = feature.size(0) // 2
+ feat_norm = F.normalize(feature)
+ feat1_norm, feat2_norm = feat_norm.split(bz)
logits = feat1_norm @ feat2_norm.T
pos_logits_mask = torch.eye(bz, dtype=torch.bool)
pos_logits = logits[pos_logits_mask].unsqueeze(-1)
neg_logits = logits[~pos_logits_mask].view(bz, -1)
# Put the positive at first (0-th) and maximize its likelihood
logits = torch.cat([pos_logits, neg_logits], dim=1)
- labels = torch.zeros(bz, dtype=torch.long, device=feat1.device)
+ labels = torch.zeros(bz, dtype=torch.long, device=feature.device)
loss_contra = F.cross_entropy(logits / self.temp, labels)
acc_contra = (logits.argmax(dim=1) == labels).float().mean()