aboutsummaryrefslogtreecommitdiff
path: root/supervised/datautils.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2022-03-16 19:42:05 +0800
committerJordan Gong <jordan.gong@protonmail.com>2022-03-16 19:42:05 +0800
commit8ddb482b8d3c79009e77bbd15c37f311c6e72aad (patch)
tree4b6967c400e1b1b27011f97f19073892306a048c /supervised/datautils.py
parent35525c0bc6b85c06dda1e88e1addd9a1cfd5a675 (diff)
Add ImageNet support
Diffstat (limited to 'supervised/datautils.py')
-rw-r--r--supervised/datautils.py54
1 files changed, 54 insertions, 0 deletions
diff --git a/supervised/datautils.py b/supervised/datautils.py
index 196fca7..843f669 100644
--- a/supervised/datautils.py
+++ b/supervised/datautils.py
@@ -1,3 +1,5 @@
+import numpy as np
+import torch
from torchvision.transforms import transforms
@@ -11,3 +13,55 @@ def color_distortion(s=1.0):
rnd_gray
])
return color_distort
+
+
+class Clip(object):
+ def __call__(self, x):
+ return torch.clamp(x, 0, 1)
+
+
+class RandomGaussianBlur(object):
+ """
+ PyTorch version of
+ https://github.com/google-research/simclr/blob/244e7128004c5fd3c7805cf3135c79baa6c3bb96/data_util.py#L311
+ """
+
+ def gaussian_blur(self, image, sigma):
+ image = image.reshape(1, 3, 224, 224)
+ radius = np.int(self.kernel_size / 2)
+ kernel_size = radius * 2 + 1
+ x = np.arange(-radius, radius + 1)
+
+ blur_filter = np.exp(
+ -np.power(x, 2.0) / (2.0 * np.power(np.float(sigma), 2.0)))
+ blur_filter /= np.sum(blur_filter)
+
+ conv1 = torch.nn.Conv2d(3, 3, kernel_size=(kernel_size, 1), groups=3,
+ padding=[kernel_size // 2, 0], bias=False)
+ conv1.weight = torch.nn.Parameter(torch.Tensor(np.tile(
+ blur_filter.reshape(kernel_size, 1, 1, 1), 3
+ ).transpose([3, 2, 0, 1])))
+
+ conv2 = torch.nn.Conv2d(3, 3, kernel_size=(1, kernel_size), groups=3,
+ padding=[0, kernel_size // 2], bias=False)
+ conv2.weight = torch.nn.Parameter(torch.Tensor(np.tile(
+ blur_filter.reshape(kernel_size, 1, 1, 1), 3
+ ).transpose([3, 2, 1, 0])))
+
+ res = conv2(conv1(image))
+ assert res.shape == image.shape
+ return res[0]
+
+ def __init__(self, kernel_size, sigma_range=(0.1, 2), p=0.5):
+ self.kernel_size = kernel_size
+ self.sigma_range = sigma_range
+ self.p = p
+
+ def __call__(self, img):
+ with torch.no_grad():
+ assert isinstance(img, torch.Tensor)
+ if np.random.uniform() < self.p:
+ return self.gaussian_blur(
+ img, sigma=np.random.uniform(*self.sigma_range)
+ )
+ return img