diff options
author | Jordan Gong <jordan.gong@protonmail.com> | 2022-03-17 20:10:42 +0800 |
---|---|---|
committer | Jordan Gong <jordan.gong@protonmail.com> | 2022-03-17 20:10:42 +0800 |
commit | 9b2c25d3c927b7533e5d7d9665b67962e4c6934b (patch) | |
tree | b4a80004ffdfe8165f5f8d077afb8b054d4472ce /supervised/schedulers.py | |
parent | 568569c764ffdd73cd660434df50d30d26203f63 (diff) |
Move some utils to libs directory
Diffstat (limited to 'supervised/schedulers.py')
-rw-r--r-- | supervised/schedulers.py | 43 |
1 files changed, 0 insertions, 43 deletions
diff --git a/supervised/schedulers.py b/supervised/schedulers.py deleted file mode 100644 index 7580bf3..0000000 --- a/supervised/schedulers.py +++ /dev/null @@ -1,43 +0,0 @@ -import warnings - -import numpy as np -import torch - - -class LinearLR(torch.optim.lr_scheduler._LRScheduler): - def __init__(self, optimizer, num_epochs, last_epoch=-1): - self.num_epochs = max(num_epochs, 1) - super().__init__(optimizer, last_epoch) - - def get_lr(self): - res = [] - for lr in self.base_lrs: - res.append(np.maximum(lr * np.minimum( - -self.last_epoch * 1. / self.num_epochs + 1., 1. - ), 0.)) - return res - - -class LinearWarmupAndCosineAnneal(torch.optim.lr_scheduler._LRScheduler): - def __init__(self, optimizer, warm_up, T_max, last_epoch=-1): - self.warm_up = int(warm_up * T_max) - self.T_max = T_max - self.warm_up - super().__init__(optimizer, last_epoch=last_epoch) - - def get_lr(self): - if not self._get_lr_called_within_step: - warnings.warn("To get the last learning rate computed by the scheduler, " - "please use `get_last_lr()`.") - - if self.last_epoch == 0: - return [lr / (self.warm_up + 1) for lr in self.base_lrs] - elif self.last_epoch <= self.warm_up: - c = (self.last_epoch + 1) / self.last_epoch - return [group['lr'] * c for group in self.optimizer.param_groups] - else: - # ref: https://github.com/pytorch/pytorch/blob/2de4f245c6b1e1c294a8b2a9d7f916d43380af4b/torch/optim/lr_scheduler.py#L493 - le = self.last_epoch - self.warm_up - return [(1 + np.cos(np.pi * le / self.T_max)) / - (1 + np.cos(np.pi * (le - 1) / self.T_max)) * - group['lr'] - for group in self.optimizer.param_groups] |