diff options
Diffstat (limited to 'libs/datautils.py')
-rw-r--r-- | libs/datautils.py | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/libs/datautils.py b/libs/datautils.py new file mode 100644 index 0000000..843f669 --- /dev/null +++ b/libs/datautils.py @@ -0,0 +1,67 @@ +import numpy as np +import torch +from torchvision.transforms import transforms + + +def color_distortion(s=1.0): + # s is the strength of color distortion. + color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s) + rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8) + rnd_gray = transforms.RandomGrayscale(p=0.2) + color_distort = transforms.Compose([ + rnd_color_jitter, + rnd_gray + ]) + return color_distort + + +class Clip(object): + def __call__(self, x): + return torch.clamp(x, 0, 1) + + +class RandomGaussianBlur(object): + """ + PyTorch version of + https://github.com/google-research/simclr/blob/244e7128004c5fd3c7805cf3135c79baa6c3bb96/data_util.py#L311 + """ + + def gaussian_blur(self, image, sigma): + image = image.reshape(1, 3, 224, 224) + radius = np.int(self.kernel_size / 2) + kernel_size = radius * 2 + 1 + x = np.arange(-radius, radius + 1) + + blur_filter = np.exp( + -np.power(x, 2.0) / (2.0 * np.power(np.float(sigma), 2.0))) + blur_filter /= np.sum(blur_filter) + + conv1 = torch.nn.Conv2d(3, 3, kernel_size=(kernel_size, 1), groups=3, + padding=[kernel_size // 2, 0], bias=False) + conv1.weight = torch.nn.Parameter(torch.Tensor(np.tile( + blur_filter.reshape(kernel_size, 1, 1, 1), 3 + ).transpose([3, 2, 0, 1]))) + + conv2 = torch.nn.Conv2d(3, 3, kernel_size=(1, kernel_size), groups=3, + padding=[0, kernel_size // 2], bias=False) + conv2.weight = torch.nn.Parameter(torch.Tensor(np.tile( + blur_filter.reshape(kernel_size, 1, 1, 1), 3 + ).transpose([3, 2, 1, 0]))) + + res = conv2(conv1(image)) + assert res.shape == image.shape + return res[0] + + def __init__(self, kernel_size, sigma_range=(0.1, 2), p=0.5): + self.kernel_size = kernel_size + self.sigma_range = sigma_range + self.p = p + + def __call__(self, img): + with torch.no_grad(): + assert isinstance(img, torch.Tensor) + if np.random.uniform() < self.p: + return self.gaussian_blur( + img, sigma=np.random.uniform(*self.sigma_range) + ) + return img |