aboutsummaryrefslogtreecommitdiff
path: root/libs/datautils.py
diff options
context:
space:
mode:
Diffstat (limited to 'libs/datautils.py')
-rw-r--r--libs/datautils.py67
1 files changed, 67 insertions, 0 deletions
diff --git a/libs/datautils.py b/libs/datautils.py
new file mode 100644
index 0000000..843f669
--- /dev/null
+++ b/libs/datautils.py
@@ -0,0 +1,67 @@
+import numpy as np
+import torch
+from torchvision.transforms import transforms
+
+
+def color_distortion(s=1.0):
+ # s is the strength of color distortion.
+ color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
+ rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8)
+ rnd_gray = transforms.RandomGrayscale(p=0.2)
+ color_distort = transforms.Compose([
+ rnd_color_jitter,
+ rnd_gray
+ ])
+ return color_distort
+
+
+class Clip(object):
+ def __call__(self, x):
+ return torch.clamp(x, 0, 1)
+
+
+class RandomGaussianBlur(object):
+ """
+ PyTorch version of
+ https://github.com/google-research/simclr/blob/244e7128004c5fd3c7805cf3135c79baa6c3bb96/data_util.py#L311
+ """
+
+ def gaussian_blur(self, image, sigma):
+ image = image.reshape(1, 3, 224, 224)
+ radius = np.int(self.kernel_size / 2)
+ kernel_size = radius * 2 + 1
+ x = np.arange(-radius, radius + 1)
+
+ blur_filter = np.exp(
+ -np.power(x, 2.0) / (2.0 * np.power(np.float(sigma), 2.0)))
+ blur_filter /= np.sum(blur_filter)
+
+ conv1 = torch.nn.Conv2d(3, 3, kernel_size=(kernel_size, 1), groups=3,
+ padding=[kernel_size // 2, 0], bias=False)
+ conv1.weight = torch.nn.Parameter(torch.Tensor(np.tile(
+ blur_filter.reshape(kernel_size, 1, 1, 1), 3
+ ).transpose([3, 2, 0, 1])))
+
+ conv2 = torch.nn.Conv2d(3, 3, kernel_size=(1, kernel_size), groups=3,
+ padding=[0, kernel_size // 2], bias=False)
+ conv2.weight = torch.nn.Parameter(torch.Tensor(np.tile(
+ blur_filter.reshape(kernel_size, 1, 1, 1), 3
+ ).transpose([3, 2, 1, 0])))
+
+ res = conv2(conv1(image))
+ assert res.shape == image.shape
+ return res[0]
+
+ def __init__(self, kernel_size, sigma_range=(0.1, 2), p=0.5):
+ self.kernel_size = kernel_size
+ self.sigma_range = sigma_range
+ self.p = p
+
+ def __call__(self, img):
+ with torch.no_grad():
+ assert isinstance(img, torch.Tensor)
+ if np.random.uniform() < self.p:
+ return self.gaussian_blur(
+ img, sigma=np.random.uniform(*self.sigma_range)
+ )
+ return img