aboutsummaryrefslogtreecommitdiff
path: root/supervised
diff options
context:
space:
mode:
Diffstat (limited to 'supervised')
-rw-r--r--supervised/baseline.py49
1 files changed, 24 insertions, 25 deletions
diff --git a/supervised/baseline.py b/supervised/baseline.py
index 5e1b32e..e7ff8f1 100644
--- a/supervised/baseline.py
+++ b/supervised/baseline.py
@@ -23,59 +23,58 @@ from models import CIFARResNet50
def parse_args_and_config():
- parser = argparse.ArgumentParser(description='Supervised baseline')
+ parser = argparse.ArgumentParser(
+ description='Supervised baseline',
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
parser.add_argument('--codename', default='cifar10-resnet50-256-adam-linear',
- type=str, help="Model descriptor (default: "
- "'cifar10-resnet50-256-adam-linear')")
+ type=str, help="Model descriptor")
parser.add_argument('--log_dir', default='logs', type=str,
- help="Path to log directory (default: 'logs')")
+ help="Path to log directory")
parser.add_argument('--checkpoint_dir', default='checkpoints', type=str,
- help="Path to checkpoints directory (default: 'checkpoints')")
- parser.add_argument('--seed', default=-1, type=int,
- help='Random seed for reproducibility '
- '(-1 for not set seed) (default: -1)')
+ help="Path to checkpoints directory")
+ parser.add_argument('--seed', default=None, type=int,
+ help='Random seed for reproducibility')
parser.add_argument('--num_iters', default=1000, type=int,
- help='Number of iters (epochs) (default: 1000)')
+ help='Number of iters (epochs)')
parser.add_argument('--config', type=argparse.FileType(mode='r'),
help='Path to config file (optional)')
dataset_group = parser.add_argument_group('Dataset parameters')
dataset_group.add_argument('--dataset_dir', default='dataset', type=str,
- help="Path to dataset directory (default: 'dataset')")
+ help="Path to dataset directory")
dataset_group.add_argument('--dataset', default='cifar10', type=str,
choices=('cifar', 'cifar10, cifar100'),
- help="Name of dataset (default: 'cifar10')")
+ help="Name of dataset")
dataset_group.add_argument('--crop_size', default=32, type=int,
- help='Random crop size after resize (default: 32)')
- dataset_group.add_argument('--crop_scale_range', nargs=2, default=(0.8, 1), type=float,
- help='Random resize scale range (default: 0.8 1)',
+ help='Random crop size after resize')
+ dataset_group.add_argument('--crop_scale_range', nargs=2, default=(0.8, 1),
+ type=float, help='Random resize scale range',
metavar=('start', 'stop'))
dataset_group.add_argument('--hflip_prob', default=0.5, type=float,
- help='Random horizontal flip probability (default: 0.5)')
+ help='Random horizontal flip probability')
dataloader_group = parser.add_argument_group('Dataloader parameters')
dataloader_group.add_argument('--batch_size', default=256, type=int,
- help='Batch size (default: 256)')
+ help='Batch size')
dataloader_group.add_argument('--num_workers', default=2, type=int,
- help='Number of dataloader processes (default: 2)')
+ help='Number of dataloader processes')
optim_group = parser.add_argument_group('Optimizer parameters')
optim_group.add_argument('--optim', default='adam', type=str,
- choices=('adam', 'sgd'),
- help="Name of optimizer (default: 'adam')")
+ choices=('adam', 'sgd'), help="Name of optimizer")
optim_group.add_argument('--lr', default=1e-3, type=float,
- help='Learning rate (default: 1)')
+ help='Learning rate')
optim_group.add_argument('--betas', nargs=2, default=(0.9, 0.999), type=float,
- help='Adam betas (default: 0.9 0.999)', metavar=('beta1', 'beta2'))
+ help='Adam betas', metavar=('beta1', 'beta2'))
optim_group.add_argument('--momentum', default=0.9, type=float,
- help='SDG momentum (default: 0.9)')
+ help='SDG momentum')
optim_group.add_argument('--weight_decay', default=1e-6, type=float,
- help='Weight decay (l2 regularization) (default: 1e-6)')
+ help='Weight decay (l2 regularization)')
sched_group = parser.add_argument_group('Optimizer parameters')
sched_group.add_argument('--sched', default='linear', type=str,
- choices=(None, '', 'linear'),
- help="Name of scheduler (default: None)")
+ choices=(None, '', 'linear'), help="Name of scheduler")
args = parser.parse_args()
if args.config: