import torch from torch import nn, Tensor from torchvision.models import ResNet from torchvision.models.resnet import BasicBlock class CIFARResNet50(ResNet): def __init__(self, num_classes): super(CIFARResNet50, self).__init__( block=BasicBlock, layers=[3, 4, 6, 3], num_classes=num_classes ) self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) def forward(self, x: Tensor) -> Tensor: x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x class ImageNetResNet50(ResNet): def __init__(self): super(ImageNetResNet50, self).__init__( block=BasicBlock, layers=[3, 4, 6, 3], num_classes=1000 )