1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
from typing import Optional
import numpy as np
import torch
from torch.utils.data import Dataset
from torchvision.transforms import transforms
def color_distortion(s=1.0):
# s is the strength of color distortion.
color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8)
rnd_gray = transforms.RandomGrayscale(p=0.2)
color_distort = transforms.Compose([
rnd_color_jitter,
rnd_gray
])
return color_distort
class Clip(object):
def __call__(self, x):
return torch.clamp(x, 0, 1)
class RandomGaussianBlur(object):
"""
PyTorch version of
https://github.com/google-research/simclr/blob/244e7128004c5fd3c7805cf3135c79baa6c3bb96/data_util.py#L311
"""
def gaussian_blur(self, image, sigma):
image = image.reshape(1, 3, 224, 224)
radius = np.int(self.kernel_size / 2)
kernel_size = radius * 2 + 1
x = np.arange(-radius, radius + 1)
blur_filter = np.exp(
-np.power(x, 2.0) / (2.0 * np.power(np.float(sigma), 2.0)))
blur_filter /= np.sum(blur_filter)
conv1 = torch.nn.Conv2d(3, 3, kernel_size=(kernel_size, 1), groups=3,
padding=[kernel_size // 2, 0], bias=False)
conv1.weight = torch.nn.Parameter(torch.Tensor(np.tile(
blur_filter.reshape(kernel_size, 1, 1, 1), 3
).transpose([3, 2, 0, 1])))
conv2 = torch.nn.Conv2d(3, 3, kernel_size=(1, kernel_size), groups=3,
padding=[0, kernel_size // 2], bias=False)
conv2.weight = torch.nn.Parameter(torch.Tensor(np.tile(
blur_filter.reshape(kernel_size, 1, 1, 1), 3
).transpose([3, 2, 1, 0])))
res = conv2(conv1(image))
assert res.shape == image.shape
return res[0]
def __init__(self, kernel_size, sigma_range=(0.1, 2), p=0.5):
self.kernel_size = kernel_size
self.sigma_range = sigma_range
self.p = p
def __call__(self, img):
with torch.no_grad():
assert isinstance(img, torch.Tensor)
if np.random.uniform() < self.p:
return self.gaussian_blur(
img, sigma=np.random.uniform(*self.sigma_range)
)
return img
class MultiCropDatasetWrapper(Dataset):
"""
Modified from Facebook SwAV at: https://github.com/facebookresearch/swav/blob/06b1b7cbaf6ba2a792300d79c7299db98b93b7f9/src/multicropdataset.py#L18
"""
def __init__(
self,
dataset: Dataset,
n_crops: list[int],
crop_sizes: list[tuple[int, int]],
crop_scale_ranges: list[tuple[float, float]],
other_transforms: Optional[transforms.Compose] = None,
):
assert len(crop_sizes) == len(n_crops)
assert len(crop_scale_ranges) == len(n_crops)
if hasattr(dataset, 'transform') and dataset.transform is not None:
raise AttributeError('Please pass the transform to wrapper.')
self.dataset = dataset
trans = []
for crop_size, crop_scale_range, n_crop in zip(
crop_sizes, crop_scale_ranges, n_crops
):
rand_resize_crop = transforms.RandomResizedCrop(
crop_size, scale=crop_scale_range
)
if other_transforms is not None:
trans_i = transforms.Compose([
rand_resize_crop, other_transforms
])
else:
trans_i = rand_resize_crop
trans += [trans_i] * n_crop
self.transform = trans
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
img, target = self.dataset[index]
multi_crops = list(map(lambda trans: trans(img), self.transform))
return multi_crops, target
class TwinTransform:
def __init__(self, transform):
self.transform = transform
def __call__(self, x):
v1 = self.transform(x)
v2 = self.transform(x)
return v1, v2
class ContinuousSampler(torch.utils.data.sampler.Sampler):
def __init__(self, sampler):
super(ContinuousSampler, self).__init__(sampler)
self.base_sampler = sampler
def __iter__(self):
while True:
for batch in self.base_sampler:
yield batch
|