1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
import os
import random
import torch
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms, InterpolationMode
from tqdm import tqdm
from optimizers import LARS
from schedulers import LinearWarmupAndCosineAnneal
from supervised.datautils import color_distortion
from supervised.models import CIFAR10ResNet50
CODENAME = 'cifar10-resnet50-aug-lars-sched'
DATASET_ROOT = 'dataset'
TENSORBOARD_PATH = os.path.join('runs', CODENAME)
CHECKPOINT_PATH = os.path.join('checkpoints', CODENAME)
BATCH_SIZE = 256
RESTORE_EPOCH = 0
N_EPOCHS = 1000
WARMUP_EPOCHS = 10
N_WORKERS = 2
SEED = 0
OPTIM = 'lars'
LR = 1
MOMENTUM = 0.9
WEIGHT_DECAY = 1e-6
random.seed(SEED)
torch.manual_seed(SEED)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_transform = transforms.Compose([
transforms.RandomResizedCrop(32, interpolation=InterpolationMode.BICUBIC),
transforms.RandomHorizontalFlip(0.5),
color_distortion(0.5),
transforms.ToTensor()
])
test_transform = transforms.Compose([
transforms.ToTensor()
])
train_set = CIFAR10(DATASET_ROOT, train=True, transform=train_transform,
download=True)
test_set = CIFAR10(DATASET_ROOT, train=False, transform=test_transform)
train_loader = DataLoader(train_set, batch_size=BATCH_SIZE,
shuffle=True, num_workers=N_WORKERS)
test_loader = DataLoader(test_set, batch_size=BATCH_SIZE,
shuffle=False, num_workers=N_WORKERS)
num_train_batches = len(train_loader)
num_test_batches = len(test_loader)
resnet = CIFAR10ResNet50().to(device)
criterion = CrossEntropyLoss()
def exclude_from_wd_and_adaptation(name):
if 'bn' in name:
return True
if OPTIM == 'lars' and 'bias' in name:
return True
param_groups = [
{
'params': [p for name, p in resnet.named_parameters()
if not exclude_from_wd_and_adaptation(name)],
'weight_decay': WEIGHT_DECAY,
'layer_adaptation': True,
},
{
'params': [p for name, p in resnet.named_parameters()
if exclude_from_wd_and_adaptation(name)],
'weight_decay': 0.,
'layer_adaptation': False,
},
]
if OPTIM == 'adam':
optimizer = torch.optim.Adam(param_groups, lr=LR, betas=(MOMENTUM, 0.999))
elif OPTIM == 'sdg' or OPTIM == 'lars':
optimizer = torch.optim.SGD(param_groups, lr=LR, momentum=MOMENTUM)
else:
raise NotImplementedError(f"Optimizer '{OPTIM}' is not implemented.")
# Restore checkpoint
if RESTORE_EPOCH > 0:
checkpoint_path = os.path.join(CHECKPOINT_PATH, f'{RESTORE_EPOCH:04d}.pt')
checkpoint = torch.load(checkpoint_path)
resnet.load_state_dict(checkpoint['resnet_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print(f'[RESTORED][{RESTORE_EPOCH}/{N_EPOCHS}]\t'
f'Train loss: {checkpoint["train_loss"]:.4f}\t'
f'Test loss: {checkpoint["test_loss"]:.4f}')
scheduler = LinearWarmupAndCosineAnneal(
optimizer,
WARMUP_EPOCHS / N_EPOCHS,
N_EPOCHS * num_train_batches,
last_epoch=RESTORE_EPOCH * num_train_batches - 1
)
if OPTIM == 'lars':
optimizer = LARS(optimizer)
if not os.path.exists(CHECKPOINT_PATH):
os.makedirs(CHECKPOINT_PATH)
writer = SummaryWriter(TENSORBOARD_PATH)
curr_train_iters = RESTORE_EPOCH * num_train_batches
curr_test_iters = RESTORE_EPOCH * num_test_batches
for epoch in range(RESTORE_EPOCH, N_EPOCHS):
train_loss = 0
training_progress = tqdm(
enumerate(train_loader), desc='Train loss: ', total=num_train_batches
)
resnet.train()
for batch, (images, targets) in training_progress:
images, targets = images.to(device), targets.to(device)
resnet.zero_grad()
output = resnet(images)
loss = criterion(output, targets)
loss.backward()
optimizer.step()
scheduler.step()
train_loss += loss.item()
train_loss_mean = train_loss / (batch + 1)
training_progress.set_description(f'Train loss: {train_loss_mean:.4f}')
writer.add_scalar('Loss/train', loss, curr_train_iters + 1)
curr_train_iters += 1
test_loss = 0
test_acc = 0
test_progress = tqdm(
enumerate(test_loader), desc='Test loss: ', total=num_test_batches
)
resnet.eval()
with torch.no_grad():
for batch, (images, targets) in test_progress:
images, targets = images.to(device), targets.to(device)
output = resnet(images)
loss = criterion(output, targets)
_, prediction = output.max(-1)
test_loss += loss
test_loss_mean = test_loss / (batch + 1)
test_progress.set_description(f'Test loss: {test_loss_mean:.4f}')
test_acc += (prediction == targets).float().mean()
test_acc_mean = test_acc / (batch + 1)
writer.add_scalar('Loss/test', loss, curr_test_iters + 1)
curr_test_iters += 1
train_loss_mean = train_loss / num_train_batches
test_loss_mean = test_loss / num_test_batches
test_acc_mean = test_acc / num_test_batches
print(f'[{epoch + 1}/{N_EPOCHS}]\t'
f'Train loss: {train_loss_mean:.4f}\t'
f'Test loss: {test_loss_mean:.4f}\t',
f'Test acc: {test_acc_mean:.4f}')
writer.add_scalar('Acc', test_acc_mean, epoch + 1)
torch.save({'epoch': epoch,
'resnet_state_dict': resnet.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'train_loss': train_loss_mean, 'test_loss': test_loss_mean,
}, os.path.join(CHECKPOINT_PATH, f'{epoch + 1:04d}.pt'))
|