1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
import torch
from torch import nn, Tensor
from torchvision.models import ResNet
from torchvision.models.resnet import BasicBlock
class CIFARResNet50(ResNet):
def __init__(self, num_classes):
super(CIFARResNet50, self).__init__(
block=BasicBlock, layers=[3, 4, 6, 3], num_classes=num_classes
)
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
def forward(self, x: Tensor) -> Tensor:
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
class ImageNetResNet50(ResNet):
def __init__(self):
super(ImageNetResNet50, self).__init__(
block=BasicBlock, layers=[3, 4, 6, 3], num_classes=1000
)
|