diff options
author | Jordan Gong <jordan.gong@protonmail.com> | 2021-01-06 22:19:27 +0800 |
---|---|---|
committer | Jordan Gong <jordan.gong@protonmail.com> | 2021-01-06 22:19:27 +0800 |
commit | f1fe77c083f952e81cf80c0b44611fc6057a7882 (patch) | |
tree | b36dbbdfc21a540bbbfb26b98cfdee0f3652f5c9 | |
parent | 4befe59046fb3adf8ef8eb589999a74cf7136ff6 (diff) |
Add CUDA support
-rw-r--r-- | models/auto_encoder.py | 7 | ||||
-rw-r--r-- | models/model.py | 12 | ||||
-rw-r--r-- | test/cuda.py | 35 |
3 files changed, 44 insertions, 10 deletions
diff --git a/models/auto_encoder.py b/models/auto_encoder.py index eaac2fe..7c1f7ef 100644 --- a/models/auto_encoder.py +++ b/models/auto_encoder.py @@ -132,17 +132,14 @@ class AutoEncoder(nn.Module): # x_c1_t2 is the frame for later module (f_a_c1_t2, f_c_c1_t2, f_p_c1_t2) = self.encoder(x_c1_t2) - f_a_size, f_c_size, f_p_size = ( - f_a_c1_t2.size(), f_c_c1_t2.size(), f_p_c1_t2.size() - ) # Decode canonical features for HPM x_c_c1_t2 = self.decoder( - torch.zeros(f_a_size), f_c_c1_t2, torch.zeros(f_p_size), + torch.zeros_like(f_a_c1_t2), f_c_c1_t2, torch.zeros_like(f_p_c1_t2), no_trans_conv=True ) # Decode pose features for Part Net x_p_c1_t2 = self.decoder( - torch.zeros(f_a_size), torch.zeros(f_c_size), f_p_c1_t2 + torch.zeros_like(f_a_c1_t2), torch.zeros_like(f_c_c1_t2), f_p_c1_t2 ) if self.training: diff --git a/models/model.py b/models/model.py index 3842844..5dc7d97 100644 --- a/models/model.py +++ b/models/model.py @@ -75,6 +75,7 @@ class Model: hp = self.hp.copy() lr, betas = hp.pop('lr', 1e-4), hp.pop('betas', (0.9, 0.999)) self.rgb_pn = RGBPartNet(self.train_size, self.in_channels, **hp) + self.rgb_pn = self.rgb_pn.to(self.device) self.optimizer = optim.Adam(self.rgb_pn.parameters(), lr, betas) self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, 500, 0.9) self.writer = SummaryWriter(self.log_name) @@ -95,9 +96,10 @@ class Model: # Zero the parameter gradients self.optimizer.zero_grad() # forward + backward + optimize - loss, metrics = self.rgb_pn( - batch_c1['clip'], batch_c2['clip'], batch_c1['label'] - ) + x_c1 = batch_c1['clip'].to(self.device) + x_c2 = batch_c2['clip'].to(self.device) + y = batch_c1['label'].to(self.device) + loss, metrics = self.rgb_pn(x_c1, x_c2, y) loss.backward() self.optimizer.step() # Step scheduler @@ -144,8 +146,8 @@ class Model: self, dataset_config: DatasetConfiguration ) -> Union[CASIAB]: - self.train_size = dataset_config['train_size'] - self.in_channels = dataset_config['num_input_channels'] + self.train_size = dataset_config.get('train_size', 74) + self.in_channels = dataset_config.get('num_input_channels', 3) self._dataset_sig = self._make_signature( dataset_config, popped_keys=['root_dir', 'cache_on'] diff --git a/test/cuda.py b/test/cuda.py new file mode 100644 index 0000000..ef0ea36 --- /dev/null +++ b/test/cuda.py @@ -0,0 +1,35 @@ +import torch + +from models import RGBPartNet + +P, K = 2, 4 +N, T, C, H, W = P * K, 10, 3, 64, 32 + + +def rand_x1_x2_y(n, t, c, h, w): + x1 = torch.rand(n, t, c, h, w) + x2 = torch.rand(n, t, c, h, w) + y = [] + for p in range(P): + y += [p] * K + y = torch.as_tensor(y) + return x1, x2, y + + +def test_default_rgb_part_net_cuda(): + rgb_pa = RGBPartNet() + rgb_pa = rgb_pa.cuda() + x1, x2, y = rand_x1_x2_y(N, T, C, H, W) + x1, x2, y = x1.cuda(), x2.cuda(), y.cuda() + + rgb_pa.train() + loss, metrics = rgb_pa(x1, x2, y) + _, _, _, _ = metrics + assert loss.device == torch.device('cuda', torch.cuda.current_device()) + assert tuple(loss.size()) == () + assert isinstance(_, float) + + rgb_pa.eval() + x = rgb_pa(x1, x2) + assert x.device == torch.device('cuda', torch.cuda.current_device()) + assert tuple(x.size()) == (23, N, 256) |