summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-02-19 22:43:17 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-02-19 22:43:17 +0800
commit4049566103a00aa6d5a0b1f73569bdc5435714ca (patch)
treed84604773f05eab030ff2106c43cb2c091b6e8fc
parentd12dd6b04a4e7c2b1ee43ab6f36f25d0c35ca364 (diff)
parent969030864495e7c2b419400fd81ee0fad83de41e (diff)
Merge branch 'python3.8' into disentangling_only_py3.8
# Conflicts: # models/hpm.py # models/layers.py # models/model.py # models/part_net.py # models/rgb_part_net.py # utils/configuration.py
-rw-r--r--models/auto_encoder.py14
-rw-r--r--models/layers.py10
-rw-r--r--models/model.py54
-rw-r--r--models/rgb_part_net.py6
-rw-r--r--preprocess.py5
-rw-r--r--startup1
-rw-r--r--utils/configuration.py14
-rw-r--r--utils/dataset.py28
-rw-r--r--utils/sampler.py5
9 files changed, 71 insertions, 66 deletions
diff --git a/models/auto_encoder.py b/models/auto_encoder.py
index 2d715db..e17caed 100644
--- a/models/auto_encoder.py
+++ b/models/auto_encoder.py
@@ -1,3 +1,5 @@
+from typing import Tuple
+
import torch
import torch.nn as nn
import torch.nn.functional as F
@@ -11,9 +13,9 @@ class Encoder(nn.Module):
def __init__(
self,
in_channels: int = 3,
- frame_size: tuple[int, int] = (64, 48),
+ frame_size: Tuple[int, int] = (64, 48),
feature_channels: int = 64,
- output_dims: tuple[int, int, int] = (128, 128, 64)
+ output_dims: Tuple[int, int, int] = (128, 128, 64)
):
super().__init__()
self.feature_channels = feature_channels
@@ -74,9 +76,9 @@ class Decoder(nn.Module):
def __init__(
self,
- input_dims: tuple[int, int, int] = (128, 128, 64),
+ input_dims: Tuple[int, int, int] = (128, 128, 64),
feature_channels: int = 64,
- feature_size: tuple[int, int] = (4, 3),
+ feature_size: Tuple[int, int] = (4, 3),
out_channels: int = 3,
):
super().__init__()
@@ -125,9 +127,9 @@ class AutoEncoder(nn.Module):
def __init__(
self,
channels: int = 3,
- frame_size: tuple[int, int] = (64, 48),
+ frame_size: Tuple[int, int] = (64, 48),
feature_channels: int = 64,
- embedding_dims: tuple[int, int, int] = (128, 128, 64)
+ embedding_dims: Tuple[int, int, int] = (128, 128, 64)
):
super().__init__()
self.encoder = Encoder(channels, frame_size,
diff --git a/models/layers.py b/models/layers.py
index 1b4640f..8228f49 100644
--- a/models/layers.py
+++ b/models/layers.py
@@ -1,4 +1,4 @@
-from typing import Union
+from typing import Union, Tuple
import torch.nn as nn
import torch.nn.functional as F
@@ -9,7 +9,7 @@ class BasicConv2d(nn.Module):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, tuple[int, int]],
+ kernel_size: Union[int, Tuple[int, int]],
**kwargs
):
super().__init__()
@@ -28,7 +28,7 @@ class VGGConv2d(BasicConv2d):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, tuple[int, int]] = 3,
+ kernel_size: Union[int, Tuple[int, int]] = 3,
padding: int = 1,
**kwargs
):
@@ -46,7 +46,7 @@ class BasicConvTranspose2d(nn.Module):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, tuple[int, int]],
+ kernel_size: Union[int, Tuple[int, int]],
**kwargs
):
super().__init__()
@@ -65,7 +65,7 @@ class DCGANConvTranspose2d(BasicConvTranspose2d):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, tuple[int, int]] = 4,
+ kernel_size: Union[int, Tuple[int, int]] = 4,
stride: int = 2,
padding: int = 1,
is_last_layer: bool = False,
diff --git a/models/model.py b/models/model.py
index 3f24936..c8f0450 100644
--- a/models/model.py
+++ b/models/model.py
@@ -1,6 +1,6 @@
import os
from datetime import datetime
-from typing import Union, Optional
+from typing import Union, Optional, Tuple, List, Dict, Set
import numpy as np
import torch
@@ -54,12 +54,12 @@ class Model:
self.is_train: bool = True
self.in_channels: int = 3
- self.in_size: tuple[int, int] = (64, 48)
+ self.in_size: Tuple[int, int] = (64, 48)
self.pr: Optional[int] = None
self.k: Optional[int] = None
- self._gallery_dataset_meta: Optional[dict[str, list]] = None
- self._probe_datasets_meta: Optional[dict[str, dict[str, list]]] = None
+ self._gallery_dataset_meta: Optional[Dict[str, List]] = None
+ self._probe_datasets_meta: Optional[Dict[str, Dict[str, List]]] = None
self._model_name: str = self.meta.get('name', 'RGB-GaitPart')
self._hp_sig: str = self._make_signature(self.hp)
@@ -107,8 +107,8 @@ class Model:
def fit_all(
self,
dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
+ dataset_selectors: Dict[
+ str, Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
],
dataloader_config: DataloaderConfiguration,
):
@@ -140,7 +140,7 @@ class Model:
dataloader = self._parse_dataloader_config(dataset, dataloader_config)
# Prepare for model, optimizer and scheduler
model_hp = self.hp.get('model', {})
- optim_hp: dict = self.hp.get('optimizer', {}).copy()
+ optim_hp: Dict = self.hp.get('optimizer', {}).copy()
sched_hp = self.hp.get('scheduler', {})
self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp,
image_log_on=self.image_log_on)
@@ -243,10 +243,10 @@ class Model:
def transform(
self,
- iters: tuple[int],
+ iters: Tuple[int],
dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
+ dataset_selectors: Dict[
+ str, Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
],
dataloader_config: DataloaderConfiguration
):
@@ -288,7 +288,7 @@ class Model:
return gallery_samples, probe_samples
- def _get_eval_sample(self, sample: dict[str, Union[list, torch.Tensor]]):
+ def _get_eval_sample(self, sample: Dict[str, Union[List, torch.Tensor]]):
label = sample.pop('label').item()
clip = sample.pop('clip').to(self.device)
x_c, x_p = self.rgb_pn(clip).detach()
@@ -300,12 +300,12 @@ class Model:
def _load_pretrained(
self,
- iters: tuple[int],
+ iters: Tuple[int],
dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
+ dataset_selectors: Dict[
+ str, Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
]
- ) -> dict[str, str]:
+ ) -> Dict[str, str]:
checkpoints = {}
for (iter_, (condition, selector)) in zip(
iters, dataset_selectors.items()
@@ -322,7 +322,7 @@ class Model:
self,
dataset_config: DatasetConfiguration,
dataloader_config: DataloaderConfiguration,
- ) -> tuple[DataLoader, dict[str, DataLoader]]:
+ ) -> Tuple[DataLoader, Dict[str, DataLoader]]:
dataset_name = dataset_config.get('name', 'CASIA-B')
if dataset_name == 'CASIA-B':
gallery_dataset = self._parse_dataset_config(
@@ -377,7 +377,7 @@ class Model:
dataset_config,
popped_keys=['root_dir', 'cache_on']
)
- config: dict = dataset_config.copy()
+ config: Dict = dataset_config.copy()
name = config.pop('name', 'CASIA-B')
if name == 'CASIA-B':
return CASIAB(**config, is_train=self.is_train)
@@ -391,7 +391,7 @@ class Model:
dataset: Union[CASIAB],
dataloader_config: DataloaderConfiguration
) -> DataLoader:
- config: dict = dataloader_config.copy()
+ config: Dict = dataloader_config.copy()
(self.pr, self.k) = config.pop('batch_size', (8, 16))
if self.is_train:
triplet_sampler = TripletSampler(dataset, (self.pr, self.k))
@@ -404,9 +404,9 @@ class Model:
def _batch_splitter(
self,
- batch: list[dict[str, Union[np.int64, str, torch.Tensor]]]
- ) -> tuple[dict[str, Union[list[str], torch.Tensor]],
- dict[str, Union[list[str], torch.Tensor]]]:
+ batch: List[Dict[str, Union[np.int64, str, torch.Tensor]]]
+ ) -> Tuple[Dict[str, Union[List[str], torch.Tensor]],
+ Dict[str, Union[List[str], torch.Tensor]]]:
"""
Disentanglement need two random conditions, this function will
split pr * k * 2 samples to 2 dicts each containing pr * k
@@ -420,8 +420,8 @@ class Model:
return default_collate(_batch[0]), default_collate(_batch[1])
def _make_signature(self,
- config: dict,
- popped_keys: Optional[list] = None) -> str:
+ config: Dict,
+ popped_keys: Optional[List] = None) -> str:
_config = config.copy()
if popped_keys:
for key in popped_keys:
@@ -429,16 +429,16 @@ class Model:
return self._gen_sig(list(_config.values()))
- def _gen_sig(self, values: Union[tuple, list, set, str, int, float]) -> str:
+ def _gen_sig(self, values: Union[Tuple, List, Set, str, int, float]) -> str:
strings = []
for v in values:
if isinstance(v, str):
strings.append(v)
- elif isinstance(v, (tuple, list)):
+ elif isinstance(v, (Tuple, List)):
strings.append(self._gen_sig(v))
- elif isinstance(v, set):
+ elif isinstance(v, Set):
strings.append(self._gen_sig(sorted(list(v))))
- elif isinstance(v, dict):
+ elif isinstance(v, Dict):
strings.append(self._gen_sig(list(v.values())))
else:
strings.append(str(v))
diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py
index f18d675..797e02b 100644
--- a/models/rgb_part_net.py
+++ b/models/rgb_part_net.py
@@ -1,3 +1,5 @@
+from typing import Tuple
+
import torch
import torch.nn as nn
@@ -8,9 +10,9 @@ class RGBPartNet(nn.Module):
def __init__(
self,
ae_in_channels: int = 3,
- ae_in_size: tuple[int, int] = (64, 48),
+ ae_in_size: Tuple[int, int] = (64, 48),
ae_feature_channels: int = 64,
- f_a_c_p_dims: tuple[int, int, int] = (128, 128, 64),
+ f_a_c_p_dims: Tuple[int, int, int] = (128, 128, 64),
image_log_on: bool = False
):
super().__init__()
diff --git a/preprocess.py b/preprocess.py
index 91fa8c2..eef59ba 100644
--- a/preprocess.py
+++ b/preprocess.py
@@ -1,5 +1,6 @@
import glob
import os
+from typing import Tuple
import torch
import torchvision
@@ -23,7 +24,7 @@ class CASIABClip(Dataset):
video, *_ = torchvision.io.read_video(filename, pts_unit='sec')
self.frames = video.permute(0, 3, 1, 2) / 255
- def __getitem__(self, index) -> tuple[int, torch.Tensor]:
+ def __getitem__(self, index) -> Tuple[int, torch.Tensor]:
return index, self.frames[index]
def __len__(self) -> int:
@@ -35,7 +36,7 @@ model = model.to(DEVICE)
model.eval()
-def result_handler(frame_: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
+def result_handler(frame_: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
for (box, label, score, mask) in zip(*result.values()):
x0, y0, x1, y1 = box
height, width = y1 - y0, x1 - x0
diff --git a/startup b/startup
index 644e59b..c871f54 100644
--- a/startup
+++ b/startup
@@ -16,6 +16,7 @@ pip3 install scikit-learn tqdm tensorboard
cd /root
git clone https://git.jordangong.com/jordangong/gait-recognition.git
+cd gait-recognition; git checkout python3.8; cd ..
mkdir -p gait-recognition/data/CASIA-B-MRCNN
wget https://storage.googleapis.com/gait-dataset/CASIA-B-MRCNN-SEG.tar.zst
tar -I zstd -xf CASIA-B-MRCNN-SEG.tar.zst -C gait-recognition/data/CASIA-B-MRCNN
diff --git a/utils/configuration.py b/utils/configuration.py
index 1b7c8d3..340815b 100644
--- a/utils/configuration.py
+++ b/utils/configuration.py
@@ -1,4 +1,4 @@
-from typing import TypedDict, Optional, Union
+from typing import TypedDict, Optional, Union, Tuple, Dict
from utils.dataset import ClipClasses, ClipConditions, ClipViews
@@ -17,14 +17,14 @@ class DatasetConfiguration(TypedDict):
num_sampled_frames: int
truncate_threshold: int
discard_threshold: int
- selector: Optional[dict[str, Union[ClipClasses, ClipConditions, ClipViews]]]
+ selector: Optional[Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]]
num_input_channels: int
- frame_size: tuple[int, int]
+ frame_size: Tuple[int, int]
cache_on: bool
class DataloaderConfiguration(TypedDict):
- batch_size: tuple[int, int]
+ batch_size: Tuple[int, int]
num_workers: int
pin_memory: bool
@@ -37,7 +37,7 @@ class ModelHPConfiguration(TypedDict):
class OptimizerHPConfiguration(TypedDict):
start_iter: int
lr: int
- betas: tuple[float, float]
+ betas: Tuple[float, float]
eps: float
weight_decay: float
amsgrad: bool
@@ -58,8 +58,8 @@ class ModelConfiguration(TypedDict):
name: str
restore_iter: int
total_iter: int
- restore_iters: tuple[int, ...]
- total_iters: tuple[int, ...]
+ restore_iters: Tuple[int, ...]
+ total_iters: Tuple[int, ...]
class Configuration(TypedDict):
diff --git a/utils/dataset.py b/utils/dataset.py
index c487988..72cf050 100644
--- a/utils/dataset.py
+++ b/utils/dataset.py
@@ -1,7 +1,7 @@
import os
import random
import re
-from typing import Optional, NewType, Union
+from typing import Optional, NewType, Union, List, Tuple, Set, Dict
import numpy as np
import torch
@@ -11,9 +11,9 @@ from sklearn.preprocessing import LabelEncoder
from torch.utils import data
from tqdm import tqdm
-ClipClasses = NewType('ClipClasses', set[str])
-ClipConditions = NewType('ClipConditions', set[str])
-ClipViews = NewType('ClipViews', set[str])
+ClipClasses = NewType('ClipClasses', Set[str])
+ClipConditions = NewType('ClipConditions', Set[str])
+ClipViews = NewType('ClipViews', Set[str])
class CASIAB(data.Dataset):
@@ -27,11 +27,11 @@ class CASIAB(data.Dataset):
num_sampled_frames: int = 30,
truncate_threshold: int = 40,
discard_threshold: int = 15,
- selector: Optional[dict[
+ selector: Optional[Dict[
str, Union[ClipClasses, ClipConditions, ClipViews]
]] = None,
num_input_channels: int = 3,
- frame_size: tuple[int, int] = (64, 32),
+ frame_size: Tuple[int, int] = (64, 32),
cache_on: bool = False
):
"""
@@ -79,15 +79,15 @@ class CASIAB(data.Dataset):
self.views: np.ndarray[np.str_]
# Labels, classes, conditions and views in dataset,
# set of three attributes above
- self.metadata: dict[str, list[np.int64, str]]
+ self.metadata: Dict[str, List[np.int64, str]]
# Dictionaries for indexing frames and frame names by clip name
# and chip path when cache is on
- self._cached_clips_frame_names: Optional[dict[str, list[str]]] = None
- self._cached_clips: Optional[dict[str, torch.Tensor]] = None
+ self._cached_clips_frame_names: Optional[Dict[str, List[str]]] = None
+ self._cached_clips: Optional[Dict[str, torch.Tensor]] = None
# Video clip directory names
- self._clip_names: list[str] = []
+ self._clip_names: List[str] = []
clip_names = sorted(os.listdir(self._root_dir))
if self._is_train:
@@ -174,7 +174,7 @@ class CASIAB(data.Dataset):
def __getitem__(
self,
index: int
- ) -> dict[str, Union[np.int64, str, torch.Tensor]]:
+ ) -> Dict[str, Union[np.int64, str, torch.Tensor]]:
label = self.labels[index]
condition = self.conditions[index]
view = self.views[index]
@@ -222,8 +222,8 @@ class CASIAB(data.Dataset):
def _load_cached_video(
self,
clip: torch.Tensor,
- frame_names: list[str],
- sampled_frame_names: list[str]
+ frame_names: List[str],
+ sampled_frame_names: List[str]
) -> torch.Tensor:
# Mask the original clip when it is long enough
if len(frame_names) >= self._num_sampled_frames:
@@ -253,7 +253,7 @@ class CASIAB(data.Dataset):
return clip
def _sample_frames(self, clip_path: str,
- is_caching: bool = False) -> list[str]:
+ is_caching: bool = False) -> List[str]:
if self._cache_on:
if is_caching:
# Sort frame in advance for loading convenience
diff --git a/utils/sampler.py b/utils/sampler.py
index cdf1984..0977f94 100644
--- a/utils/sampler.py
+++ b/utils/sampler.py
@@ -1,6 +1,5 @@
import random
-from collections.abc import Iterator
-from typing import Union
+from typing import Union, Tuple, Iterator
import numpy as np
from torch.utils import data
@@ -12,7 +11,7 @@ class TripletSampler(data.Sampler):
def __init__(
self,
data_source: Union[CASIAB],
- batch_size: tuple[int, int]
+ batch_size: Tuple[int, int]
):
super().__init__(data_source)
self.metadata_labels = data_source.metadata['labels']