summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-02-28 23:11:05 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-02-28 23:11:05 +0800
commitfed5e6a9b35fda8306147e9ce772dfbf3142a061 (patch)
tree7ad4ffef229e64699522a468c11f071d5a45a725
parentb837336695213e3e660992fcd01c5a52c654ea4f (diff)
Implement sum of loss default in [1]
[1]A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for person re-identification,” arXiv preprint arXiv:1703.07737, 2017.
-rw-r--r--config.py2
-rw-r--r--models/model.py10
-rw-r--r--utils/configuration.py1
-rw-r--r--utils/triplet_loss.py43
4 files changed, 38 insertions, 18 deletions
diff --git a/config.py b/config.py
index 9072982..4c108e2 100644
--- a/config.py
+++ b/config.py
@@ -65,6 +65,8 @@ config: Configuration = {
'embedding_dims': 256,
# Batch Hard or Batch All
'triplet_is_hard': True,
+ # Use non-zero mean or sum
+ 'triplet_is_mean': True,
# Triplet loss margins for HPM and PartNet, None for soft margin
'triplet_margins': None,
},
diff --git a/models/model.py b/models/model.py
index 18896ae..34cb816 100644
--- a/models/model.py
+++ b/models/model.py
@@ -146,6 +146,7 @@ class Model:
# Prepare for model, optimizer and scheduler
model_hp: dict = self.hp.get('model', {}).copy()
triplet_is_hard = model_hp.pop('triplet_is_hard', True)
+ triplet_is_mean = model_hp.pop('triplet_is_mean', True)
triplet_margins = model_hp.pop('triplet_margins', None)
optim_hp: dict = self.hp.get('optimizer', {}).copy()
start_iter = optim_hp.pop('start_iter', 0)
@@ -165,10 +166,13 @@ class Model:
)
else: # Different margins
self.triplet_loss = JointBatchTripletLoss(
- self.rgb_pn.hpm_num_parts, triplet_is_hard, triplet_margins
+ self.rgb_pn.hpm_num_parts,
+ triplet_is_hard, triplet_is_mean, triplet_margins
)
else: # Soft margins
- self.triplet_loss = BatchTripletLoss(triplet_is_hard, None)
+ self.triplet_loss = BatchTripletLoss(
+ triplet_is_hard, triplet_is_mean, None
+ )
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
@@ -243,7 +247,7 @@ class Model:
'PartNet': losses[4]
}, self.curr_iter)
# None-zero losses in batch
- if num_non_zero:
+ if num_non_zero is not None:
self.writer.add_scalars('Loss/non-zero counts', {
'HPM': num_non_zero[:self.rgb_pn.hpm_num_parts].mean(),
'PartNet': num_non_zero[self.rgb_pn.hpm_num_parts:].mean()
diff --git a/utils/configuration.py b/utils/configuration.py
index 20aec76..31eb243 100644
--- a/utils/configuration.py
+++ b/utils/configuration.py
@@ -44,6 +44,7 @@ class ModelHPConfiguration(TypedDict):
tfa_num_parts: int
embedding_dims: int
triplet_is_hard: bool
+ triplet_is_mean: bool
triplet_margins: tuple[float, float]
diff --git a/utils/triplet_loss.py b/utils/triplet_loss.py
index 52d676e..db0cf0f 100644
--- a/utils/triplet_loss.py
+++ b/utils/triplet_loss.py
@@ -9,10 +9,12 @@ class BatchTripletLoss(nn.Module):
def __init__(
self,
is_hard: bool = True,
+ is_mean: bool = True,
margin: Optional[float] = 0.2,
):
super().__init__()
self.is_hard = is_hard
+ self.is_mean = is_mean
self.margin = margin
def forward(self, x, y):
@@ -27,13 +29,20 @@ class BatchTripletLoss(nn.Module):
positive_negative_dist = self._all_distance(dist, y, p, n)
if self.margin:
- all_loss = F.relu(self.margin + positive_negative_dist).view(p, -1)
- loss_mean, non_zero_counts = self._none_zero_parted_mean(all_loss)
- return loss_mean, flat_dist, non_zero_counts
+ losses = F.relu(self.margin + positive_negative_dist).view(p, -1)
+ non_zero_counts = (losses != 0).sum(1).float()
+ if self.is_mean:
+ loss_metric = self._none_zero_mean(losses, non_zero_counts)
+ else: # is_sum
+ loss_metric = losses.sum(1)
+ return loss_metric, flat_dist, non_zero_counts
else: # Soft margin
- all_loss = F.softplus(positive_negative_dist).view(p, -1)
- loss_mean = all_loss.mean(1)
- return loss_mean, flat_dist, None
+ losses = F.softplus(positive_negative_dist).view(p, -1)
+ if self.is_mean:
+ loss_metric = losses.mean(1)
+ else: # is_sum
+ loss_metric = losses.sum(1)
+ return loss_metric, flat_dist, None
@staticmethod
def _batch_distance(x):
@@ -68,13 +77,11 @@ class BatchTripletLoss(nn.Module):
return positive_negative_dist
@staticmethod
- def _none_zero_parted_mean(all_loss):
+ def _none_zero_mean(losses, non_zero_counts):
# Non-zero parted mean
- non_zero_counts = (all_loss != 0).sum(1).float()
- non_zero_mean = all_loss.sum(1) / non_zero_counts
+ non_zero_mean = losses.sum(1) / non_zero_counts
non_zero_mean[non_zero_counts == 0] = 0
-
- return non_zero_mean, non_zero_counts
+ return non_zero_mean
class JointBatchTripletLoss(BatchTripletLoss):
@@ -82,9 +89,10 @@ class JointBatchTripletLoss(BatchTripletLoss):
self,
hpm_num_parts: int,
is_hard: bool = True,
+ is_mean: bool = True,
margins: tuple[float, float] = (0.2, 0.2)
):
- super().__init__(is_hard)
+ super().__init__(is_hard, is_mean)
self.hpm_num_parts = hpm_num_parts
self.margin_hpm, self.margin_pn = margins
@@ -103,7 +111,12 @@ class JointBatchTripletLoss(BatchTripletLoss):
pn_part_loss = F.relu(
self.margin_pn + positive_negative_dist[self.hpm_num_parts:]
)
- all_loss = torch.cat((hpm_part_loss, pn_part_loss)).view(p, -1)
- non_zero_mean, non_zero_counts = self._none_zero_parted_mean(all_loss)
+ losses = torch.cat((hpm_part_loss, pn_part_loss)).view(p, -1)
+
+ non_zero_counts = (losses != 0).sum(1).float()
+ if self.is_mean:
+ loss_metric = self._none_zero_mean(losses, non_zero_counts)
+ else: # is_sum
+ loss_metric = losses.sum(1)
- return non_zero_mean, dist, non_zero_counts
+ return loss_metric, dist, non_zero_counts