diff options
author | Jordan Gong <jordan.gong@protonmail.com> | 2021-02-20 14:42:45 +0800 |
---|---|---|
committer | Jordan Gong <jordan.gong@protonmail.com> | 2021-02-20 14:43:06 +0800 |
commit | c538919cb69e35a46811aef0b23baefe6a4c499c (patch) | |
tree | bee9a9582dfbb60053a6dd53f1a958abaa9dd8d5 | |
parent | 969030864495e7c2b419400fd81ee0fad83de41e (diff) | |
parent | 820d3dec284f38e6a3089dad5277bc3f6c5123bf (diff) |
Merge branch 'master' into python3.8
# Conflicts:
# models/model.py
# models/rgb_part_net.py
-rw-r--r-- | models/auto_encoder.py | 2 | ||||
-rw-r--r-- | models/model.py | 21 | ||||
-rw-r--r-- | models/rgb_part_net.py | 20 | ||||
-rw-r--r-- | utils/triplet_loss.py | 60 |
4 files changed, 74 insertions, 29 deletions
diff --git a/models/auto_encoder.py b/models/auto_encoder.py index e17caed..6f388c2 100644 --- a/models/auto_encoder.py +++ b/models/auto_encoder.py @@ -173,7 +173,7 @@ class AutoEncoder(nn.Module): return ( (f_a_c1_t2_, f_c_c1_t2_, f_p_c1_t2_), - (xrecon_loss, cano_cons_loss, pose_sim_loss * 10) + torch.stack((xrecon_loss, cano_cons_loss, pose_sim_loss * 10)) ) else: # evaluating return f_c_c1_t2_, f_p_c1_t2_ diff --git a/models/model.py b/models/model.py index 2b7e401..a42a5c6 100644 --- a/models/model.py +++ b/models/model.py @@ -18,6 +18,7 @@ from utils.configuration import DataloaderConfiguration, \ SystemConfiguration from utils.dataset import CASIAB, ClipConditions, ClipViews, ClipClasses from utils.sampler import TripletSampler +from utils.triplet_loss import JointBatchAllTripletLoss class Model: @@ -67,6 +68,7 @@ class Model: self._dataset_sig: str = 'undefined' self.rgb_pn: Optional[RGBPartNet] = None + self.ba_triplet_loss: Optional[JointBatchAllTripletLoss] = None self.optimizer: Optional[optim.Adam] = None self.scheduler: Optional[optim.lr_scheduler.StepLR] = None self.writer: Optional[SummaryWriter] = None @@ -140,7 +142,8 @@ class Model: dataset = self._parse_dataset_config(dataset_config) dataloader = self._parse_dataloader_config(dataset, dataloader_config) # Prepare for model, optimizer and scheduler - model_hp = self.hp.get('model', {}) + model_hp: Dict = self.hp.get('model', {}).copy() + triplet_margins = model_hp.pop('triplet_margins', (0.2, 0.2)) optim_hp: Dict = self.hp.get('optimizer', {}).copy() start_iter = optim_hp.pop('start_iter', 0) ae_optim_hp = optim_hp.pop('auto_encoder', {}) @@ -150,8 +153,12 @@ class Model: sched_hp = self.hp.get('scheduler', {}) self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp, image_log_on=self.image_log_on) + self.ba_triplet_loss = JointBatchAllTripletLoss( + self.rgb_pn.hpm_num_parts, triplet_margins + ) # Try to accelerate computation using CUDA or others self.rgb_pn = self.rgb_pn.to(self.device) + self.ba_triplet_loss = self.ba_triplet_loss.to(self.device) self.optimizer = optim.Adam([ {'params': self.rgb_pn.ae.parameters(), **ae_optim_hp}, {'params': self.rgb_pn.pn.parameters(), **pn_optim_hp}, @@ -193,10 +200,18 @@ class Model: # forward + backward + optimize x_c1 = batch_c1['clip'].to(self.device) x_c2 = batch_c2['clip'].to(self.device) + feature, ae_losses, images = self.rgb_pn(x_c1, x_c2) y = batch_c1['label'].to(self.device) # Duplicate labels for each part - y = y.unsqueeze(1).repeat(1, self.rgb_pn.num_total_parts) - losses, images = self.rgb_pn(x_c1, x_c2, y) + y = y.repeat(self.rgb_pn.num_total_parts, 1) + triplet_loss = self.ba_triplet_loss(feature, y) + losses = torch.cat(( + ae_losses, + torch.stack(( + triplet_loss[:self.rgb_pn.hpm_num_parts].mean(), + triplet_loss[self.rgb_pn.hpm_num_parts:].mean() + )) + )) loss = losses.sum() loss.backward() self.optimizer.step() diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py index 2af990e..15b69f9 100644 --- a/models/rgb_part_net.py +++ b/models/rgb_part_net.py @@ -6,7 +6,6 @@ import torch.nn as nn from models.auto_encoder import AutoEncoder from models.hpm import HorizontalPyramidMatching from models.part_net import PartNet -from utils.triplet_loss import BatchAllTripletLoss class RGBPartNet(nn.Module): @@ -27,7 +26,6 @@ class RGBPartNet(nn.Module): tfa_squeeze_ratio: int = 4, tfa_num_parts: int = 16, embedding_dims: int = 256, - triplet_margins: Tuple[float, float] = (0.2, 0.2), image_log_on: bool = False ): super().__init__() @@ -52,17 +50,13 @@ class RGBPartNet(nn.Module): out_channels, embedding_dims) self.fc_mat = nn.Parameter(empty_fc) - (hpm_margin, pn_margin) = triplet_margins - self.hpm_ba_trip = BatchAllTripletLoss(hpm_margin) - self.pn_ba_trip = BatchAllTripletLoss(pn_margin) - def fc(self, x): return x @ self.fc_mat - def forward(self, x_c1, x_c2=None, y=None): + def forward(self, x_c1, x_c2=None): # Step 1: Disentanglement # n, t, c, h, w - ((x_c, x_p), losses, images) = self._disentangle(x_c1, x_c2) + ((x_c, x_p), ae_losses, images) = self._disentangle(x_c1, x_c2) # Step 2.a: Static Gait Feature Aggregation & HPM # n, c, h, w @@ -79,15 +73,7 @@ class RGBPartNet(nn.Module): x = self.fc(x) if self.training: - y = y.T - hpm_ba_trip = self.hpm_ba_trip( - x[:self.hpm_num_parts], y[:self.hpm_num_parts] - ) - pn_ba_trip = self.pn_ba_trip( - x[self.hpm_num_parts:], y[self.hpm_num_parts:] - ) - losses = torch.stack((*losses, hpm_ba_trip, pn_ba_trip)) - return losses, images + return x, ae_losses, images else: return x.unsqueeze(1).view(-1) diff --git a/utils/triplet_loss.py b/utils/triplet_loss.py index 954def2..6025bd3 100644 --- a/utils/triplet_loss.py +++ b/utils/triplet_loss.py @@ -1,3 +1,5 @@ +from typing import Tuple + import torch import torch.nn as nn import torch.nn.functional as F @@ -11,6 +13,25 @@ class BatchAllTripletLoss(nn.Module): def forward(self, x, y): p, n, c = x.size() + dist = self._batch_distance(x) + positive_negative_dist = self._hard_distance(dist, y, p, n) + all_loss = F.relu(self.margin + positive_negative_dist).view(p, -1) + parted_loss_mean = self._none_zero_parted_mean(all_loss) + + return parted_loss_mean + + @staticmethod + def _hard_distance(dist, y, p, n): + hard_positive_mask = y.unsqueeze(1) == y.unsqueeze(2) + hard_negative_mask = y.unsqueeze(1) != y.unsqueeze(2) + all_hard_positive = dist[hard_positive_mask].view(p, n, -1, 1) + all_hard_negative = dist[hard_negative_mask].view(p, n, 1, -1) + positive_negative_dist = all_hard_positive - all_hard_negative + + return positive_negative_dist + + @staticmethod + def _batch_distance(x): # Euclidean distance p x n x n x_squared_sum = torch.sum(x ** 2, dim=2) x1_squared_sum = x_squared_sum.unsqueeze(2) @@ -20,17 +41,40 @@ class BatchAllTripletLoss(nn.Module): F.relu(x1_squared_sum - 2 * x1_times_x2_sum + x2_squared_sum) ) - hard_positive_mask = y.unsqueeze(1) == y.unsqueeze(2) - hard_negative_mask = y.unsqueeze(1) != y.unsqueeze(2) - all_hard_positive = dist[hard_positive_mask].view(p, n, -1, 1) - all_hard_negative = dist[hard_negative_mask].view(p, n, 1, -1) - positive_negative_dist = all_hard_positive - all_hard_negative - all_loss = F.relu(self.margin + positive_negative_dist).view(p, -1) + return dist + @staticmethod + def _none_zero_parted_mean(all_loss): # Non-zero parted mean non_zero_counts = (all_loss != 0).sum(1) parted_loss_mean = all_loss.sum(1) / non_zero_counts parted_loss_mean[non_zero_counts == 0] = 0 - loss = parted_loss_mean.mean() - return loss + return parted_loss_mean + + +class JointBatchAllTripletLoss(BatchAllTripletLoss): + def __init__( + self, + hpm_num_parts: int, + margins: Tuple[float, float] = (0.2, 0.2) + ): + super().__init__() + self.hpm_num_parts = hpm_num_parts + self.margin_hpm, self.margin_pn = margins + + def forward(self, x, y): + p, n, c = x.size() + + dist = self._batch_distance(x) + positive_negative_dist = self._hard_distance(dist, y, p, n) + hpm_part_loss = F.relu( + self.margin_hpm + positive_negative_dist[:self.hpm_num_parts] + ).view(self.hpm_num_parts, -1) + pn_part_loss = F.relu( + self.margin_pn + positive_negative_dist[self.hpm_num_parts:] + ).view(p - self.hpm_num_parts, -1) + all_loss = torch.cat((hpm_part_loss, pn_part_loss)).view(p, -1) + parted_loss_mean = self._none_zero_parted_mean(all_loss) + + return parted_loss_mean |