summaryrefslogtreecommitdiff
path: root/models/auto_encoder.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2020-12-24 15:42:42 +0800
committerJordan Gong <jordan.gong@protonmail.com>2020-12-24 15:42:42 +0800
commit4ad6d0af2f4e6868576582e4b86b096a2e95e6fa (patch)
treef518144b8e08da82513600bc5e956602a288426b /models/auto_encoder.py
parentdedf51f4fcbfb954558e157a0e449fc2ea48e7e1 (diff)
Change the usage of layers and reorganize relations of layers
1. Add batch normalization and activation to layers 2. VGGConv2d and FocalConv2d inherits to BasicConv2d; DCGANConvTranspose2d inherits to BasicConvTranspose2d
Diffstat (limited to 'models/auto_encoder.py')
-rw-r--r--models/auto_encoder.py36
1 files changed, 15 insertions, 21 deletions
diff --git a/models/auto_encoder.py b/models/auto_encoder.py
index 1be878f..6483bd9 100644
--- a/models/auto_encoder.py
+++ b/models/auto_encoder.py
@@ -15,36 +15,32 @@ class Encoder(nn.Module):
# Cx[HxW]
# Conv1 3x64x32 -> 64x64x32
self.conv1 = VGGConv2d(in_channels, nf)
- self.batch_norm1 = nn.BatchNorm2d(nf)
# MaxPool1 64x64x32 -> 64x32x16
self.max_pool1 = nn.AdaptiveMaxPool2d((32, 16))
# Conv2 64x32x16 -> 256x32x16
self.conv2 = VGGConv2d(nf, nf * 4)
- self.batch_norm2 = nn.BatchNorm2d(nf * 4)
# MaxPool2 256x32x16 -> 256x16x8
self.max_pool2 = nn.AdaptiveMaxPool2d((16, 8))
# Conv3 256x16x8 -> 512x16x8
self.conv3 = VGGConv2d(nf * 4, nf * 8)
- self.batch_norm3 = nn.BatchNorm2d(nf * 8)
# Conv4 512x16x8 -> 512x16x8 (for large dataset)
self.conv4 = VGGConv2d(nf * 8, nf * 8)
- self.batch_norm4 = nn.BatchNorm2d(nf * 8)
# MaxPool3 512x16x8 -> 512x4x2
self.max_pool3 = nn.AdaptiveMaxPool2d((4, 2))
# FC 512*4*2 -> 320
- self.fc = nn.Linear(nf * 8 * 2 * 4, self.em_dim)
- self.batch_norm_fc = nn.BatchNorm1d(self.em_dim)
+ self.fc = nn.Linear(nf * 8 * 2 * 4, self.em_dim, bias=False)
+ self.bn_fc = nn.BatchNorm1d(self.em_dim)
def forward(self, x):
- x = F.leaky_relu(self.batch_norm1(self.conv1(x)), 0.2, inplace=True)
+ x = self.conv1(x)
x = self.max_pool1(x)
- x = F.leaky_relu(self.batch_norm2(self.conv2(x)), 0.2, inplace=True)
+ x = self.conv2(x)
x = self.max_pool2(x)
- x = F.leaky_relu(self.batch_norm3(self.conv3(x)), 0.2, inplace=True)
- x = F.leaky_relu(self.batch_norm4(self.conv4(x)), 0.2, inplace=True)
+ x = self.conv3(x)
+ x = self.conv4(x)
x = self.max_pool3(x)
x = x.view(-1, (64 * 8) * 2 * 4)
- embedding = self.batch_norm_fc(self.fc(x))
+ embedding = self.bn_fc(self.fc(x))
fa, fgs, fgd = embedding.split(
(self.opt.fa_dim, self.opt.fg_dim / 2, self.opt.fg_dim / 2), dim=1
@@ -61,26 +57,24 @@ class Decoder(nn.Module):
# Cx[HxW]
# FC 320 -> 512*4*2
self.fc = nn.Linear(self.em_dim, nf * 8 * 2 * 4)
- self.batch_norm_fc = nn.BatchNorm1d(nf * 8 * 2 * 4)
+ self.bn_fc = nn.BatchNorm1d(nf * 8 * 2 * 4)
# TransConv1 512x4x2 -> 256x8x4
self.trans_conv1 = DCGANConvTranspose2d(nf * 8, nf * 4)
- self.batch_norm1 = nn.BatchNorm2d(nf * 4)
# TransConv2 256x8x4 -> 128x16x8
self.trans_conv2 = DCGANConvTranspose2d(nf * 4, nf * 2)
- self.batch_norm2 = nn.BatchNorm2d(nf * 2)
# TransConv3 128x16x8 -> 64x32x16
self.trans_conv3 = DCGANConvTranspose2d(nf * 2, nf)
- self.batch_norm3 = nn.BatchNorm2d(nf)
# TransConv4 3x32x16
- self.trans_conv4 = DCGANConvTranspose2d(nf, out_channels)
+ self.trans_conv4 = DCGANConvTranspose2d(nf, out_channels,
+ is_last_layer=True)
def forward(self, fa, fgs, fgd):
x = torch.cat((fa, fgs, fgd), dim=1).view(-1, self.em_dim)
- x = F.relu(self.batch_norm_fc(self.fc(x)), True)
- x = x.view(-1, 64 * 8, 4, 2)
- x = F.relu(self.batch_norm1(self.trans_conv1(x)), True)
- x = F.relu(self.batch_norm2(self.trans_conv2(x)), True)
- x = F.relu(self.batch_norm3(self.trans_conv3(x)), True)
+ x = self.bn_fc(self.fc(x))
+ x = F.relu(x.view(-1, 64 * 8, 4, 2), True)
+ x = self.trans_conv1(x)
+ x = self.trans_conv2(x)
+ x = self.trans_conv3(x)
x = F.sigmoid(self.trans_conv4(x))
return x