summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-02-15 12:03:07 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-02-15 12:03:07 +0800
commitcf59a1f8339e937e31281907a61f484af99ce955 (patch)
treeaa72b2091d36562c31237c63dd2b0629359d7fb1 /models/model.py
parentd51312415a32686793d3f0d14eda7fa7cc3990ea (diff)
Add DataParallel support on new codebase
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py7
1 files changed, 7 insertions, 0 deletions
diff --git a/models/model.py b/models/model.py
index f79b832..532ded3 100644
--- a/models/model.py
+++ b/models/model.py
@@ -150,6 +150,7 @@ class Model:
self.rgb_pn = RGBPartNet(self.in_channels, **model_hp,
image_log_on=self.image_log_on)
# Try to accelerate computation using CUDA or others
+ self.rgb_pn = nn.DataParallel(self.rgb_pn)
self.rgb_pn = self.rgb_pn.to(self.device)
self.optimizer = optim.Adam([
{'params': self.rgb_pn.ae.parameters(), **ae_optim_hp},
@@ -196,6 +197,12 @@ class Model:
# Duplicate labels for each part
y = y.unsqueeze(1).repeat(1, self.rgb_pn.num_total_parts)
losses, images = self.rgb_pn(x_c1, x_c2, y)
+ losses = torch.stack((
+ # xrecon cano_cons pose_sim
+ losses[0].sum(), losses[1].mean(), losses[2].mean(),
+ # hpm_ba_trip pn_ba_trip
+ losses[3].mean(), losses[4].mean()
+ ))
loss = losses.sum()
loss.backward()
self.optimizer.step()