summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-03-05 20:10:06 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-03-05 20:10:06 +0800
commite1cf9890578fccba7542dff8a96391bd5aefdf7d (patch)
treec08781e075b791b74fde38939ab2a51990b70b09 /models/model.py
parent6db53397468a3fd6bf6fbb323ac514a98cc4f3cb (diff)
parent228b8cbdb067e159942adbb7892373b53593e87f (diff)
Merge branch 'data_parallel' into data_parallel_py3.8
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py42
1 files changed, 28 insertions, 14 deletions
diff --git a/models/model.py b/models/model.py
index 22996fe..2a74c8c 100644
--- a/models/model.py
+++ b/models/model.py
@@ -172,6 +172,7 @@ class Model:
triplet_is_hard, triplet_is_mean, None
)
+ num_sampled_frames = dataset_config.get('num_sampled_frames', 30)
num_pairs = (self.pr*self.k-1) * (self.pr*self.k) // 2
num_pos_pairs = (self.k*(self.k-1)//2) * self.pr
@@ -230,18 +231,31 @@ class Model:
# forward + backward + optimize
x_c1 = batch_c1['clip'].to(self.device)
x_c2 = batch_c2['clip'].to(self.device)
- embedding, ae_losses, images = self.rgb_pn(x_c1, x_c2)
+ embedding, images, feature_for_loss = self.rgb_pn(x_c1, x_c2)
+ x_c1_pred = feature_for_loss[0]
+ xrecon_loss = torch.stack([
+ F.mse_loss(x_c1_pred[:, i, :, :, :], x_c1[:, i, :, :, :])
+ for i in range(num_sampled_frames)
+ ]).sum()
+ f_c_c1_t1, f_c_c1_t2, f_c_c2_t2 = feature_for_loss[1]
+ cano_cons_loss = torch.stack([
+ F.mse_loss(f_c_c1_t1[:, i, :], f_c_c1_t2[:, i, :])
+ + F.mse_loss(f_c_c1_t2[:, i, :], f_c_c2_t2[:, i, :])
+ for i in range(num_sampled_frames)
+ ]).mean()
+ f_p_c1_t2, f_p_c2_t2 = feature_for_loss[2]
+ pose_sim_loss = F.mse_loss(
+ f_p_c1_t2.mean(1), f_p_c2_t2.mean(1)
+ ) * 10
y = batch_c1['label'].to(self.device)
# Duplicate labels for each part
y = y.repeat(self.rgb_pn.module.num_total_parts, 1)
embedding = embedding.transpose(0, 1)
- trip_loss, dist, num_non_zero = self.triplet_loss(embedding, y)
- losses = torch.cat((
- ae_losses.view(-1, 3).mean(0),
- torch.stack((
- trip_loss[:self.rgb_pn.module.hpm_num_parts].mean(),
- trip_loss[self.rgb_pn.module.hpm_num_parts:].mean()
- ))
+ triplet_loss, dist, num_non_zero = self.triplet_loss(embedding, y)
+ hpm_loss = triplet_loss[:self.rgb_pn.module.hpm_num_parts].mean()
+ pn_loss = triplet_loss[self.rgb_pn.module.hpm_num_parts:].mean()
+ losses = torch.stack((
+ xrecon_loss, cano_cons_loss, pose_sim_loss, hpm_loss, pn_loss
))
loss = losses.sum()
loss.backward()
@@ -251,13 +265,13 @@ class Model:
running_loss += losses.detach()
# Write losses to TensorBoard
self.writer.add_scalar('Loss/all', loss, self.curr_iter)
- self.writer.add_scalars('Loss/disentanglement', dict(zip((
- 'Cross reconstruction loss', 'Canonical consistency loss',
- 'Pose similarity loss'
- ), ae_losses)), self.curr_iter)
+ self.writer.add_scalars('Loss/disentanglement', {
+ 'Cross reconstruction loss': xrecon_loss,
+ 'Canonical consistency loss': cano_cons_loss,
+ 'Pose similarity loss': pose_sim_loss
+ }, self.curr_iter)
self.writer.add_scalars('Loss/triplet loss', {
- 'HPM': losses[3],
- 'PartNet': losses[4]
+ 'HPM': hpm_loss, 'PartNet': pn_loss
}, self.curr_iter)
# None-zero losses in batch
if num_non_zero is not None: