summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-01-21 23:32:53 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-01-21 23:32:53 +0800
commit04c9d3210ff659bbe00dedb2d193a748e7a97b54 (patch)
tree8a6e2029f60579da59a40bca0de52696aa2aaae8 /models/model.py
parent59ccfd7718babe94fac549fcfbfa22bb311f0bd8 (diff)
Print average losses after 100 iters
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py20
1 files changed, 13 insertions, 7 deletions
diff --git a/models/model.py b/models/model.py
index 8797636..3b54363 100644
--- a/models/model.py
+++ b/models/model.py
@@ -164,6 +164,9 @@ class Model:
# Training start
start_time = datetime.now()
+ running_loss = torch.zeros(4).to(self.device)
+ print(f"{'Iter':^5} {'Loss':^6} {'Xrecon':^8} {'PoseSim':^8}",
+ f"{'CanoCons':^8} {'BATrip':^8} {'LR':^9}")
for (batch_c1, batch_c2) in dataloader:
self.curr_iter += 1
# Zero the parameter gradients
@@ -172,24 +175,27 @@ class Model:
x_c1 = batch_c1['clip'].to(self.device)
x_c2 = batch_c2['clip'].to(self.device)
y = batch_c1['label'].to(self.device)
- loss, metrics = self.rgb_pn(x_c1, x_c2, y)
+ losses = self.rgb_pn(x_c1, x_c2, y)
+ loss = losses.sum()
loss.backward()
self.optimizer.step()
# Step scheduler
self.scheduler.step()
+ # Statistics and checkpoint
+ running_loss += losses.detach()
# Write losses to TensorBoard
- self.writer.add_scalar('Loss/all', loss.item(), self.curr_iter)
+ self.writer.add_scalar('Loss/all', loss, self.curr_iter)
self.writer.add_scalars('Loss/details', dict(zip([
'Cross reconstruction loss', 'Pose similarity loss',
'Canonical consistency loss', 'Batch All triplet loss'
- ], metrics)), self.curr_iter)
+ ], losses)), self.curr_iter)
if self.curr_iter % 100 == 0:
- print('{0:5d} loss: {1:6.3f}'.format(self.curr_iter, loss),
- '(xrecon = {:f}, pose_sim = {:f},'
- ' cano_cons = {:f}, ba_trip = {:f})'.format(*metrics),
- 'lr:', self.scheduler.get_last_lr()[0])
+ print(f'{self.curr_iter:5d} {running_loss.sum() / 100:6.3f}',
+ '{:f} {:f} {:f} {:f}'.format(*running_loss / 100),
+ f'{self.scheduler.get_last_lr()[0]:.3e}')
+ running_loss.zero_()
if self.curr_iter % 1000 == 0:
torch.save({