summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-01-21 23:47:52 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-01-21 23:47:52 +0800
commitc0c8299354bd41bfd668ff0fb3edb5997f590c5d (patch)
tree25502d76a218a71ad5c2d51001876b08d734ee47 /models/model.py
parent42847b721a99350e1eed423dce99574c584d97ef (diff)
parentd750dd9dafe3cda3b1331ad2bfecb53c8c2b1267 (diff)
Merge branch 'python3.8' into python3.7
# Conflicts: # utils/configuration.py
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py33
1 files changed, 24 insertions, 9 deletions
diff --git a/models/model.py b/models/model.py
index aa45d66..5a8c0e8 100644
--- a/models/model.py
+++ b/models/model.py
@@ -130,12 +130,21 @@ class Model:
dataloader = self._parse_dataloader_config(dataset, dataloader_config)
# Prepare for model, optimizer and scheduler
model_hp = self.hp.get('model', {})
- optim_hp = self.hp.get('optimizer', {})
+ optim_hp: Dict = self.hp.get('optimizer', {}).copy()
+ ae_optim_hp = optim_hp.pop('auto_encoder', {})
+ pn_optim_hp = optim_hp.pop('part_net', {})
+ hpm_optim_hp = optim_hp.pop('hpm', {})
+ fc_optim_hp = optim_hp.pop('fc', {})
sched_hp = self.hp.get('scheduler', {})
self.rgb_pn = RGBPartNet(self.train_size, self.in_channels, **model_hp)
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
- self.optimizer = optim.Adam(self.rgb_pn.parameters(), **optim_hp)
+ self.optimizer = optim.Adam([
+ {'params': self.rgb_pn.ae.parameters(), **ae_optim_hp},
+ {'params': self.rgb_pn.pn.parameters(), **pn_optim_hp},
+ {'params': self.rgb_pn.hpm.parameters(), **hpm_optim_hp},
+ {'params': self.rgb_pn.fc_mat, **fc_optim_hp},
+ ], **optim_hp)
self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, **sched_hp)
self.writer = SummaryWriter(self._log_name)
@@ -152,6 +161,9 @@ class Model:
# Training start
start_time = datetime.now()
+ running_loss = torch.zeros(4).to(self.device)
+ print(f"{'Iter':^5} {'Loss':^6} {'Xrecon':^8} {'PoseSim':^8}",
+ f"{'CanoCons':^8} {'BATrip':^8} {'LR':^9}")
for (batch_c1, batch_c2) in dataloader:
self.curr_iter += 1
# Zero the parameter gradients
@@ -160,24 +172,27 @@ class Model:
x_c1 = batch_c1['clip'].to(self.device)
x_c2 = batch_c2['clip'].to(self.device)
y = batch_c1['label'].to(self.device)
- loss, metrics = self.rgb_pn(x_c1, x_c2, y)
+ losses = self.rgb_pn(x_c1, x_c2, y)
+ loss = losses.sum()
loss.backward()
self.optimizer.step()
# Step scheduler
self.scheduler.step()
+ # Statistics and checkpoint
+ running_loss += losses.detach()
# Write losses to TensorBoard
- self.writer.add_scalar('Loss/all', loss.item(), self.curr_iter)
+ self.writer.add_scalar('Loss/all', loss, self.curr_iter)
self.writer.add_scalars('Loss/details', dict(zip([
'Cross reconstruction loss', 'Pose similarity loss',
'Canonical consistency loss', 'Batch All triplet loss'
- ], metrics)), self.curr_iter)
+ ], losses)), self.curr_iter)
if self.curr_iter % 100 == 0:
- print('{0:5d} loss: {1:6.3f}'.format(self.curr_iter, loss),
- '(xrecon = {:f}, pose_sim = {:f},'
- ' cano_cons = {:f}, ba_trip = {:f})'.format(*metrics),
- 'lr:', self.scheduler.get_last_lr()[0])
+ print(f'{self.curr_iter:5d} {running_loss.sum() / 100:6.3f}',
+ '{:f} {:f} {:f} {:f}'.format(*running_loss / 100),
+ f'{self.scheduler.get_last_lr()[0]:.3e}')
+ running_loss.zero_()
if self.curr_iter % 1000 == 0:
torch.save({