summaryrefslogtreecommitdiff
path: root/models/rgb_part_net.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-01-02 16:36:17 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-01-02 16:36:17 +0800
commitde8561d1d053730c5af03e1d06850efb60865d3c (patch)
treea30a3ef80cbad4af163ebb4a0448bfb39c3c5128 /models/rgb_part_net.py
parent86421e899c87976d8559795979415e3fae2bd7ed (diff)
Change type of pose similarity loss to tensor
Diffstat (limited to 'models/rgb_part_net.py')
-rw-r--r--models/rgb_part_net.py5
1 files changed, 2 insertions, 3 deletions
diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py
index 9768dec..377c108 100644
--- a/models/rgb_part_net.py
+++ b/models/rgb_part_net.py
@@ -44,7 +44,7 @@ class RGBPartNet(nn.Module):
f_p_c2: torch.Tensor) -> torch.Tensor:
f_p_c1_mean = f_p_c1.mean(dim=0)
f_p_c2_mean = f_p_c2.mean(dim=0)
- return self.mse_loss(f_p_c1_mean, f_p_c2_mean).item()
+ return self.mse_loss(f_p_c1_mean, f_p_c2_mean)
def forward(self, x_c1, x_c2, y):
# Step 0: Swap batch_size and time dimensions for next step
@@ -55,7 +55,7 @@ class RGBPartNet(nn.Module):
# t, n, c, h, w
num_frames = len(x_c1)
f_c_c1, f_p_c1, f_p_c2 = [], [], []
- xrecon_loss, cano_cons_loss = 0, 0
+ xrecon_loss, cano_cons_loss = torch.zeros(1), torch.zeros(1)
for t2 in range(num_frames):
t1 = random.randrange(num_frames)
output = self.ae(x_c1[t1], x_c1[t2], x_c2[t2], y)
@@ -86,7 +86,6 @@ class RGBPartNet(nn.Module):
# Step 3: Cat feature map together and calculate losses
x = torch.cat(x_c, x_p)
# Losses
- xrecon_loss /= num_frames
f_p_c2 = torch.stack(f_p_c2)
pose_sim_loss = self.pose_sim_loss(f_p_c1, f_p_c2)
cano_cons_loss /= num_frames