diff options
author | Jordan Gong <jordan.gong@protonmail.com> | 2021-02-14 20:36:17 +0800 |
---|---|---|
committer | Jordan Gong <jordan.gong@protonmail.com> | 2021-02-14 20:36:17 +0800 |
commit | be508061aeb3049a547c4e0c92d21c254689c1d5 (patch) | |
tree | 3aea2a7c8e9d8090ea4ca8045b780ceb3647d2d7 /models/rgb_part_net.py | |
parent | 929c48093c9f49a515420eb28d2678e48756b300 (diff) |
Memory usage improvement
This update separates input data to two batches, which reduces ~30% memory usage.
Diffstat (limited to 'models/rgb_part_net.py')
-rw-r--r-- | models/rgb_part_net.py | 117 |
1 files changed, 60 insertions, 57 deletions
diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py index 2aa680c..17e090d 100644 --- a/models/rgb_part_net.py +++ b/models/rgb_part_net.py @@ -56,64 +56,67 @@ class RGBPartNet(nn.Module): def fc(self, x): return x @ self.fc_mat - def forward(self, x_c1, x_c2=None, y=None): - # Step 1: Disentanglement - # n, t, c, h, w - ((x_c, x_p), losses, images) = self._disentangle(x_c1, x_c2) - - # Step 2.a: Static Gait Feature Aggregation & HPM - # n, c, h, w - x_c = self.hpm(x_c) - # p, n, c - - # Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation) - # n, t, c, h, w - x_p = self.pn(x_p) - # p, n, c - - # Step 3: Cat feature map together and fc - x = torch.cat((x_c, x_p)) - x = self.fc(x) - - if self.training: - y = y.T - hpm_ba_trip = self.hpm_ba_trip( - x[:self.hpm_num_parts], y[:self.hpm_num_parts] - ) - pn_ba_trip = self.pn_ba_trip( - x[self.hpm_num_parts:], y[self.hpm_num_parts:] - ) - losses = torch.stack((*losses, hpm_ba_trip, pn_ba_trip)) - return losses, images - else: - return x.unsqueeze(1).view(-1) - - def _disentangle(self, x_c1_t2, x_c2_t2=None): - n, t, c, h, w = x_c1_t2.size() - device = x_c1_t2.device - x_c1_t1 = x_c1_t2[:, torch.randperm(t), :, :, :] - if self.training: - ((f_a_, f_c_, f_p_), losses) = self.ae(x_c1_t2, x_c1_t1, x_c2_t2) - # Decode features - with torch.no_grad(): + def forward(self, x, y=None, is_c1=True): + # Step 1a: Disentangle condition 1 clips + if is_c1: + # n, t, c, h, w + ((x_c, x_p), xrecon_loss, images) = self._disentangle(x, is_c1) + + # Step 2.a: Static Gait Feature Aggregation & HPM + # n, c, h, w + x_c = self.hpm(x_c) + # p, n, c + + # Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation) + # n, t, c, h, w + x_p = self.pn(x_p) + # p, n, c + + # Step 3: Cat feature map together and fc + x = torch.cat((x_c, x_p)) + x = self.fc(x) + + if self.training: + y = y.T + hpm_ba_trip = self.hpm_ba_trip( + x[:self.hpm_num_parts], y[:self.hpm_num_parts] + ) + pn_ba_trip = self.pn_ba_trip( + x[self.hpm_num_parts:], y[self.hpm_num_parts:] + ) + return (xrecon_loss, hpm_ba_trip, pn_ba_trip), images + else: # evaluating + return x.unsqueeze(1).view(-1) + else: # Step 1b: Disentangle condition 2 clips + return self._disentangle(x, is_c1) + + def _disentangle(self, x_t2, is_c1=True): + if is_c1: # condition 1 + n, t, *_ = x_size = x_t2.size() + device = x_t2.device + if self.training: + (f_a_, f_c_, f_p_), xrecon_loss = self.ae(x_t2, is_c1) + # Decode features + with torch.no_grad(): + x_c = self._decode_cano_feature(f_c_, n, t, device) + x_p = self._decode_pose_feature(f_p_, *x_size, device) + + i_a, i_c, i_p = None, None, None + if self.image_log_on: + i_a = self._decode_appr_feature(f_a_, *x_size, device) + # Continue decoding canonical features + i_c = self.ae.decoder.trans_conv3(x_c) + i_c = torch.sigmoid(self.ae.decoder.trans_conv4(i_c)) + i_p = x_p + + return (x_c, x_p), xrecon_loss, (i_a, i_c, i_p) + else: # evaluating + f_c_, f_p_ = self.ae(x_t2) x_c = self._decode_cano_feature(f_c_, n, t, device) - x_p = self._decode_pose_feature(f_p_, n, t, c, h, w, device) - - i_a, i_c, i_p = None, None, None - if self.image_log_on: - i_a = self._decode_appr_feature(f_a_, n, t, c, h, w, device) - # Continue decoding canonical features - i_c = self.ae.decoder.trans_conv3(x_c) - i_c = torch.sigmoid(self.ae.decoder.trans_conv4(i_c)) - i_p = x_p - - return (x_c, x_p), losses, (i_a, i_c, i_p) - - else: # evaluating - f_c_, f_p_ = self.ae(x_c1_t2) - x_c = self._decode_cano_feature(f_c_, n, t, device) - x_p = self._decode_pose_feature(f_p_, n, t, c, h, w, device) - return (x_c, x_p), None, None + x_p = self._decode_pose_feature(f_p_, *x_size, device) + return (x_c, x_p), None, None + else: # condition 2 + return self.ae(x_t2, is_c1) def _decode_appr_feature(self, f_a_, n, t, c, h, w, device): # Decode appearance features |