summaryrefslogtreecommitdiff
path: root/models/tfa.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2020-12-30 16:58:17 +0800
committerJordan Gong <jordan.gong@protonmail.com>2020-12-30 16:58:17 +0800
commit5ba9390a7e4e8dbf366cfd280403cf37a6b22bab (patch)
tree7aa7db759ccd1cb410b5d9c738a0b7d071493a95 /models/tfa.py
parent0178b7722c63820d701b0442b5946d9a042074d7 (diff)
Combine FPFE and TFA to GaitPart
Diffstat (limited to 'models/tfa.py')
-rw-r--r--models/tfa.py77
1 files changed, 0 insertions, 77 deletions
diff --git a/models/tfa.py b/models/tfa.py
deleted file mode 100644
index b80328a..0000000
--- a/models/tfa.py
+++ /dev/null
@@ -1,77 +0,0 @@
-import copy
-
-import torch
-import torch.nn as nn
-
-from models.layers import BasicConv1d
-
-
-class TemporalFeatureAggregator(nn.Module):
- def __init__(
- self,
- in_channels: int,
- squeeze: int = 4,
- num_part: int = 16
- ):
- super(TemporalFeatureAggregator, self).__init__()
- hidden_dim = in_channels // squeeze
- self.num_part = num_part
-
- # MTB1
- conv3x1 = nn.Sequential(
- BasicConv1d(in_channels, hidden_dim, kernel_size=3, padding=1),
- nn.LeakyReLU(inplace=True),
- BasicConv1d(hidden_dim, in_channels, kernel_size=1, padding=0)
- )
- self.conv1d3x1 = self._parted(conv3x1)
- self.avg_pool3x1 = nn.AvgPool1d(kernel_size=3, stride=1, padding=1)
- self.max_pool3x1 = nn.MaxPool1d(kernel_size=3, stride=1, padding=1)
-
- # MTB2
- conv3x3 = nn.Sequential(
- BasicConv1d(in_channels, hidden_dim, kernel_size=3, padding=1),
- nn.LeakyReLU(inplace=True),
- BasicConv1d(hidden_dim, in_channels, kernel_size=3, padding=1)
- )
- self.conv1d3x3 = self._parted(conv3x3)
- self.avg_pool3x3 = nn.AvgPool1d(kernel_size=5, stride=1, padding=2)
- self.max_pool3x3 = nn.MaxPool1d(kernel_size=5, stride=1, padding=2)
-
- def _parted(self, module: nn.Module):
- """Duplicate module `part_num` times."""
- return nn.ModuleList([copy.deepcopy(module)
- for _ in range(self.num_part)])
-
- def forward(self, x):
- """
- Input: x, [p, n, c, s]
- """
- p, n, c, s = x.size()
- feature = x.split(1, 0)
- x = x.view(-1, c, s)
-
- # MTB1: ConvNet1d & Sigmoid
- logits3x1 = torch.cat(
- [conv(_.squeeze(0)).unsqueeze(0)
- for conv, _ in zip(self.conv1d3x1, feature)], dim=0
- )
- scores3x1 = torch.sigmoid(logits3x1)
- # MTB1: Template Function
- feature3x1 = self.avg_pool3x1(x) + self.max_pool3x1(x)
- feature3x1 = feature3x1.view(p, n, c, s)
- feature3x1 = feature3x1 * scores3x1
-
- # MTB2: ConvNet1d & Sigmoid
- logits3x3 = torch.cat(
- [conv(_.squeeze(0)).unsqueeze(0)
- for conv, _ in zip(self.conv1d3x3, feature)], dim=0
- )
- scores3x3 = torch.sigmoid(logits3x3)
- # MTB2: Template Function
- feature3x3 = self.avg_pool3x3(x) + self.max_pool3x3(x)
- feature3x3 = feature3x3.view(p, n, c, s)
- feature3x3 = feature3x3 * scores3x3
-
- # Temporal Pooling
- ret = (feature3x1 + feature3x3).max(-1)[0]
- return ret