summaryrefslogtreecommitdiff
path: root/models
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-02-15 12:03:07 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-02-15 14:06:59 +0800
commit6fb1c7cb34a65769c018a08324387af419355b32 (patch)
treec940384179b7f492592fb11f066f0c816ee57ce6 /models
parentd51312415a32686793d3f0d14eda7fa7cc3990ea (diff)
Add DataParallel support on new codebase
Diffstat (limited to 'models')
-rw-r--r--models/model.py17
-rw-r--r--models/rgb_part_net.py2
2 files changed, 13 insertions, 6 deletions
diff --git a/models/model.py b/models/model.py
index f79b832..eb12285 100644
--- a/models/model.py
+++ b/models/model.py
@@ -150,12 +150,13 @@ class Model:
self.rgb_pn = RGBPartNet(self.in_channels, **model_hp,
image_log_on=self.image_log_on)
# Try to accelerate computation using CUDA or others
+ self.rgb_pn = nn.DataParallel(self.rgb_pn)
self.rgb_pn = self.rgb_pn.to(self.device)
self.optimizer = optim.Adam([
- {'params': self.rgb_pn.ae.parameters(), **ae_optim_hp},
- {'params': self.rgb_pn.pn.parameters(), **pn_optim_hp},
- {'params': self.rgb_pn.hpm.parameters(), **hpm_optim_hp},
- {'params': self.rgb_pn.fc_mat, **fc_optim_hp}
+ {'params': self.rgb_pn.module.ae.parameters(), **ae_optim_hp},
+ {'params': self.rgb_pn.module.pn.parameters(), **pn_optim_hp},
+ {'params': self.rgb_pn.module.hpm.parameters(), **hpm_optim_hp},
+ {'params': self.rgb_pn.module.fc_mat, **fc_optim_hp}
], **optim_hp)
sched_gamma = sched_hp.get('gamma', 0.9)
sched_step_size = sched_hp.get('step_size', 500)
@@ -194,8 +195,14 @@ class Model:
x_c2 = batch_c2['clip'].to(self.device)
y = batch_c1['label'].to(self.device)
# Duplicate labels for each part
- y = y.unsqueeze(1).repeat(1, self.rgb_pn.num_total_parts)
+ y = y.unsqueeze(1).repeat(1, self.rgb_pn.module.num_total_parts)
losses, images = self.rgb_pn(x_c1, x_c2, y)
+ losses = torch.stack((
+ # xrecon cano_cons pose_sim
+ losses[0].sum(), losses[1].mean(), losses[2].mean(),
+ # hpm_ba_trip pn_ba_trip
+ losses[3].mean(), losses[4].mean()
+ ))
loss = losses.sum()
loss.backward()
self.optimizer.step()
diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py
index 2aa680c..66609fd 100644
--- a/models/rgb_part_net.py
+++ b/models/rgb_part_net.py
@@ -83,7 +83,7 @@ class RGBPartNet(nn.Module):
pn_ba_trip = self.pn_ba_trip(
x[self.hpm_num_parts:], y[self.hpm_num_parts:]
)
- losses = torch.stack((*losses, hpm_ba_trip, pn_ba_trip))
+ losses = (*losses, hpm_ba_trip, pn_ba_trip)
return losses, images
else:
return x.unsqueeze(1).view(-1)