diff options
author | Jordan Gong <jordan.gong@protonmail.com> | 2021-02-08 18:11:25 +0800 |
---|---|---|
committer | Jordan Gong <jordan.gong@protonmail.com> | 2021-02-08 18:25:42 +0800 |
commit | 99ddd7c142a4ec97cb8bd14b204651790b3cf4ee (patch) | |
tree | a4ccbd08a7155e90df63aba60eb93ab2b7969c9b /models | |
parent | 507e1d163aaa6ea4be23e7f08ff6ce0ef58c830b (diff) |
Code refactoring, modifications and new features
1. Decode features outside of auto-encoder
2. Turn off HPM 1x1 conv by default
3. Change canonical feature map size from `feature_channels * 8 x 4 x 2` to `feature_channels * 2 x 16 x 8`
4. Use mean of canonical embeddings instead of mean of static features
5. Calculate static and dynamic loss separately
6. Calculate mean of parts in triplet loss instead of sum of parts
7. Add switch to log disentangled images
8. Change default configuration
Diffstat (limited to 'models')
-rw-r--r-- | models/auto_encoder.py | 26 | ||||
-rw-r--r-- | models/hpm.py | 20 | ||||
-rw-r--r-- | models/layers.py | 10 | ||||
-rw-r--r-- | models/model.py | 34 | ||||
-rw-r--r-- | models/rgb_part_net.py | 141 |
5 files changed, 148 insertions, 83 deletions
diff --git a/models/auto_encoder.py b/models/auto_encoder.py index 35cb629..f04ffdb 100644 --- a/models/auto_encoder.py +++ b/models/auto_encoder.py @@ -95,15 +95,14 @@ class Decoder(nn.Module): self.trans_conv4 = DCGANConvTranspose2d(feature_channels, out_channels, is_last_layer=True) - def forward(self, f_appearance, f_canonical, f_pose, no_trans_conv=False): + def forward(self, f_appearance, f_canonical, f_pose, cano_only=False): x = torch.cat((f_appearance, f_canonical, f_pose), dim=1) x = self.fc(x) x = F.relu(x.view(-1, self.feature_channels * 8, 4, 2), inplace=True) - # Decode canonical features without transpose convolutions - if no_trans_conv: - return x x = self.trans_conv1(x) x = self.trans_conv2(x) + if cano_only: + return x x = self.trans_conv3(x) x = torch.sigmoid(self.trans_conv4(x)) @@ -125,21 +124,6 @@ class AutoEncoder(nn.Module): # x_c1_t2 is the frame for later module (f_a_c1_t2, f_c_c1_t2, f_p_c1_t2) = self.encoder(x_c1_t2) - with torch.no_grad(): - # Decode canonical features for HPM - x_c_c1_t2 = self.decoder( - torch.zeros_like(f_a_c1_t2), - f_c_c1_t2, - torch.zeros_like(f_p_c1_t2), - no_trans_conv=True - ) - # Decode pose features for Part Net - x_p_c1_t2 = self.decoder( - torch.zeros_like(f_a_c1_t2), - torch.zeros_like(f_c_c1_t2), - f_p_c1_t2 - ) - if self.training: # t1 is random time step, c2 is another condition (f_a_c1_t1, f_c_c1_t1, _) = self.encoder(x_c1_t1) @@ -151,9 +135,9 @@ class AutoEncoder(nn.Module): + F.mse_loss(f_c_c1_t2, f_c_c2_t2)) return ( - (x_c_c1_t2, x_p_c1_t2), + (f_a_c1_t2, f_c_c1_t2, f_p_c1_t2), (f_p_c1_t2, f_p_c2_t2), (xrecon_loss_t2, cano_cons_loss_t2) ) else: # evaluating - return x_c_c1_t2, x_p_c1_t2 + return f_c_c1_t2, f_p_c1_t2 diff --git a/models/hpm.py b/models/hpm.py index 66503e3..9879cfb 100644 --- a/models/hpm.py +++ b/models/hpm.py @@ -9,14 +9,16 @@ class HorizontalPyramidMatching(nn.Module): self, in_channels: int, out_channels: int = 128, + use_1x1conv: bool = False, scales: tuple[int, ...] = (1, 2, 4), use_avg_pool: bool = True, - use_max_pool: bool = True, + use_max_pool: bool = False, **kwargs ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels + self.use_1x1conv = use_1x1conv self.scales = scales self.use_avg_pool = use_avg_pool self.use_max_pool = use_max_pool @@ -29,6 +31,7 @@ class HorizontalPyramidMatching(nn.Module): pyramid = nn.ModuleList([ HorizontalPyramidPooling(self.in_channels, self.out_channels, + use_1x1conv=self.use_1x1conv, use_avg_pool=self.use_avg_pool, use_max_pool=self.use_max_pool, **kwargs) @@ -37,23 +40,16 @@ class HorizontalPyramidMatching(nn.Module): return pyramid def forward(self, x): - # Flatten canonical features in all batches - t, n, c, h, w = x.size() - x = x.view(t * n, c, h, w) - + n, c, h, w = x.size() feature = [] - for pyramid_index, pyramid in enumerate(self.pyramids): - h_per_hpp = h // self.scales[pyramid_index] + for scale, pyramid in zip(self.scales, self.pyramids): + h_per_hpp = h // scale for hpp_index, hpp in enumerate(pyramid): h_filter = torch.arange(hpp_index * h_per_hpp, (hpp_index + 1) * h_per_hpp) x_slice = x[:, :, h_filter, :] x_slice = hpp(x_slice) - x_slice = x_slice.view(t * n, -1) + x_slice = x_slice.view(n, -1) feature.append(x_slice) x = torch.stack(feature) - - # Unfold frames to original batch - p, _, c = x.size() - x = x.view(p, t, n, c) return x diff --git a/models/layers.py b/models/layers.py index a9f04b3..7b6ba5c 100644 --- a/models/layers.py +++ b/models/layers.py @@ -167,12 +167,13 @@ class HorizontalPyramidPooling(BasicConv2d): self, in_channels: int, out_channels: int, - kernel_size: Union[int, tuple[int, int]] = 1, + use_1x1conv: bool = False, use_avg_pool: bool = True, - use_max_pool: bool = True, + use_max_pool: bool = False, **kwargs ): - super().__init__(in_channels, out_channels, kernel_size, **kwargs) + super().__init__(in_channels, out_channels, kernel_size=1, **kwargs) + self.use_1x1conv = use_1x1conv self.use_avg_pool = use_avg_pool self.use_max_pool = use_max_pool assert use_avg_pool or use_max_pool, 'Pooling layer(s) required.' @@ -186,5 +187,6 @@ class HorizontalPyramidPooling(BasicConv2d): x = self.avg_pool(x) elif not self.use_avg_pool and self.use_max_pool: x = self.max_pool(x) - x = super().forward(x) + if self.use_1x1conv: + x = super().forward(x) return x diff --git a/models/model.py b/models/model.py index ddb715d..0418070 100644 --- a/models/model.py +++ b/models/model.py @@ -69,6 +69,7 @@ class Model: self.optimizer: Optional[optim.Adam] = None self.scheduler: Optional[optim.lr_scheduler.StepLR] = None self.writer: Optional[SummaryWriter] = None + self.image_log_on = system_config.get('image_log_on', False) self.CASIAB_GALLERY_SELECTOR = { 'selector': {'conditions': ClipConditions({r'nm-0[1-4]'})} @@ -146,7 +147,8 @@ class Model: hpm_optim_hp = optim_hp.pop('hpm', {}) fc_optim_hp = optim_hp.pop('fc', {}) sched_hp = self.hp.get('scheduler', {}) - self.rgb_pn = RGBPartNet(self.in_channels, **model_hp) + self.rgb_pn = RGBPartNet(self.in_channels, **model_hp, + image_log_on=self.image_log_on) # Try to accelerate computation using CUDA or others self.rgb_pn = self.rgb_pn.to(self.device) self.optimizer = optim.Adam([ @@ -168,9 +170,9 @@ class Model: # Training start start_time = datetime.now() - running_loss = torch.zeros(4).to(self.device) + running_loss = torch.zeros(5, device=self.device) print(f"{'Iter':^5} {'Loss':^6} {'Xrecon':^8} {'PoseSim':^8}", - f"{'CanoCons':^8} {'BATrip':^8} LR(s)") + f"{'CanoCons':^8} {'BATripH':^8} {'BATripP':^8} LR(s)") for (batch_c1, batch_c2) in dataloader: if self.curr_iter == start_iter: self.optimizer.add_param_group( @@ -189,7 +191,7 @@ class Model: x_c1 = batch_c1['clip'].to(self.device) x_c2 = batch_c2['clip'].to(self.device) y = batch_c1['label'].to(self.device) - losses = self.rgb_pn(x_c1, x_c2, y) + losses, images = self.rgb_pn(x_c1, x_c2, y) loss = losses.sum() loss.backward() self.optimizer.step() @@ -200,13 +202,33 @@ class Model: self.writer.add_scalar('Loss/all', loss, self.curr_iter) self.writer.add_scalars('Loss/details', dict(zip([ 'Cross reconstruction loss', 'Pose similarity loss', - 'Canonical consistency loss', 'Batch All triplet loss' + 'Canonical consistency loss', 'Batch All triplet loss (HPM)', + 'Batch All triplet loss (PartNet)' ], losses)), self.curr_iter) + if self.image_log_on: + (appearance_image, canonical_image, pose_image) = images + self.writer.add_images( + 'Canonical image', canonical_image, self.curr_iter + ) + for i in range(self.pr * self.k): + self.writer.add_images( + f'Original image/batch {i}', x_c1[i], self.curr_iter + ) + self.writer.add_images( + f'Appearance image/batch {i}', + appearance_image[:, i, :, :, :], + self.curr_iter + ) + self.writer.add_images( + f'Pose image/batch {i}', + pose_image[:, i, :, :, :], + self.curr_iter + ) if self.curr_iter % 100 == 0: lrs = self.scheduler.get_last_lr() print(f'{self.curr_iter:5d} {running_loss.sum() / 100:6.3f}', - '{:f} {:f} {:f} {:f}'.format(*running_loss / 100), + '{:f} {:f} {:f} {:f} {:f}'.format(*running_loss / 100), ' '.join(('{:.3e}'.format(lr) for lr in lrs))) running_loss.zero_() diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py index 755d5dc..0e7d8b3 100644 --- a/models/rgb_part_net.py +++ b/models/rgb_part_net.py @@ -16,6 +16,7 @@ class RGBPartNet(nn.Module): ae_in_channels: int = 3, ae_feature_channels: int = 64, f_a_c_p_dims: tuple[int, int, int] = (128, 128, 64), + hpm_use_1x1conv: bool = False, hpm_scales: tuple[int, ...] = (1, 2, 4), hpm_use_avg_pool: bool = True, hpm_use_max_pool: bool = True, @@ -26,9 +27,14 @@ class RGBPartNet(nn.Module): tfa_squeeze_ratio: int = 4, tfa_num_parts: int = 16, embedding_dims: int = 256, - triplet_margin: float = 0.2 + triplet_margins: tuple[float, float] = (0.2, 0.2), + image_log_on: bool = False ): super().__init__() + (self.f_a_dim, self.f_c_dim, self.f_p_dim) = f_a_c_p_dims + self.hpm_num_parts = sum(hpm_scales) + self.image_log_on = image_log_on + self.ae = AutoEncoder( ae_in_channels, ae_feature_channels, f_a_c_p_dims ) @@ -38,14 +44,16 @@ class RGBPartNet(nn.Module): ) out_channels = self.pn.tfa_in_channels self.hpm = HorizontalPyramidMatching( - ae_feature_channels * 8, out_channels, hpm_scales, - hpm_use_avg_pool, hpm_use_max_pool + ae_feature_channels * 2, out_channels, hpm_use_1x1conv, + hpm_scales, hpm_use_avg_pool, hpm_use_max_pool ) - total_parts = sum(hpm_scales) + tfa_num_parts - empty_fc = torch.empty(total_parts, out_channels, embedding_dims) + empty_fc = torch.empty(self.hpm_num_parts + tfa_num_parts, + out_channels, embedding_dims) self.fc_mat = nn.Parameter(empty_fc) - self.ba_triplet_loss = BatchAllTripletLoss(triplet_margin) + (hpm_margin, pn_margin) = triplet_margins + self.hpm_ba_trip = BatchAllTripletLoss(hpm_margin) + self.pn_ba_trip = BatchAllTripletLoss(pn_margin) def fc(self, x): return x @ self.fc_mat @@ -59,13 +67,11 @@ class RGBPartNet(nn.Module): # Step 1: Disentanglement # t, n, c, h, w - ((x_c_c1, x_p_c1), losses) = self._disentangle(x_c1, x_c2) + ((x_c_c1, x_p_c1), images, losses) = self._disentangle(x_c1, x_c2) - # Step 2.a: HPM & Static Gait Feature Aggregation - # t, n, c, h, w + # Step 2.a: Static Gait Feature Aggregation & HPM + # n, c, h, w x_c = self.hpm(x_c_c1) - # p, t, n, c - x_c = x_c.mean(dim=1) # p, n, c # Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation) @@ -78,44 +84,83 @@ class RGBPartNet(nn.Module): x = self.fc(x) if self.training: - batch_all_triplet_loss = self.ba_triplet_loss(x, y) - losses = torch.stack((*losses, batch_all_triplet_loss)) - return losses + hpm_ba_trip = self.hpm_ba_trip(x[:self.hpm_num_parts], y) + pn_ba_trip = self.pn_ba_trip(x[self.hpm_num_parts:], y) + losses = torch.stack((*losses, hpm_ba_trip, pn_ba_trip)) + return losses, images else: return x.unsqueeze(1).view(-1) def _disentangle(self, x_c1, x_c2=None): t, n, c, h, w = x_c1.size() + device = x_c1.device if self.training: - # Decoded canonical features and Pose images - x_c_c1, x_p_c1 = [], [] + # Encoded appearance, canonical and pose features + f_a_c1, f_c_c1, f_p_c1 = [], [], [] # Features required to calculate losses - f_p_c1, f_p_c2 = [], [] + f_p_c2 = [] xrecon_loss, cano_cons_loss = [], [] for t2 in range(t): t1 = random.randrange(t) output = self.ae(x_c1[t2], x_c1[t1], x_c2[t2]) - (x_c1_t2, f_p_t2, losses) = output + (f_c1_t2, f_p_t2, losses) = output - # Decoded features or image - (x_c_c1_t2, x_p_c1_t2) = x_c1_t2 - # Canonical Features for HPM - x_c_c1.append(x_c_c1_t2) - # Pose image for Part Net - x_p_c1.append(x_p_c1_t2) + (f_a_c1_t2, f_c_c1_t2, f_p_c1_t2) = f_c1_t2 + if self.image_log_on: + f_a_c1.append(f_a_c1_t2) + # Save canonical features and pose features + f_c_c1.append(f_c_c1_t2) + f_p_c1.append(f_p_c1_t2) # Losses per time step # Used in pose similarity loss - (f_p_c1_t2, f_p_c2_t2) = f_p_t2 - f_p_c1.append(f_p_c1_t2) + (_, f_p_c2_t2) = f_p_t2 f_p_c2.append(f_p_c2_t2) + # Cross reconstruction loss and canonical loss (xrecon_loss_t2, cano_cons_loss_t2) = losses xrecon_loss.append(xrecon_loss_t2) cano_cons_loss.append(cano_cons_loss_t2) - - x_c_c1 = torch.stack(x_c_c1) - x_p_c1 = torch.stack(x_p_c1) + if self.image_log_on: + f_a_c1 = torch.stack(f_a_c1) + f_c_c1_mean = torch.stack(f_c_c1).mean(0) + f_p_c1 = torch.stack(f_p_c1) + f_p_c2 = torch.stack(f_p_c2) + + # Decode features + appearance_image, canonical_image, pose_image = None, None, None + with torch.no_grad(): + # Decode average canonical features to higher dimension + x_c_c1 = self.ae.decoder( + torch.zeros((n, self.f_a_dim), device=device), + f_c_c1_mean, + torch.zeros((n, self.f_p_dim), device=device), + cano_only=True + ) + # Decode pose features to images + f_p_c1_ = f_p_c1.view(t * n, -1) + x_p_c1_ = self.ae.decoder( + torch.zeros((t * n, self.f_a_dim), device=device), + torch.zeros((t * n, self.f_c_dim), device=device), + f_p_c1_ + ) + x_p_c1 = x_p_c1_.view(t, n, c, h, w) + + if self.image_log_on: + # Decode appearance features + f_a_c1_ = f_a_c1.view(t * n, -1) + appearance_image_ = self.ae.decoder( + f_a_c1_, + torch.zeros((t * n, self.f_c_dim), device=device), + torch.zeros((t * n, self.f_p_dim), device=device) + ) + appearance_image = appearance_image_.view(t, n, c, h, w) + # Continue decoding canonical features + canonical_image = self.ae.decoder.trans_conv3(x_c_c1) + canonical_image = torch.sigmoid( + self.ae.decoder.trans_conv4(canonical_image) + ) + pose_image = x_p_c1 # Losses xrecon_loss = torch.sum(torch.stack(xrecon_loss)) @@ -123,20 +168,36 @@ class RGBPartNet(nn.Module): cano_cons_loss = torch.mean(torch.stack(cano_cons_loss)) return ((x_c_c1, x_p_c1), + (appearance_image, canonical_image, pose_image), (xrecon_loss, pose_sim_loss, cano_cons_loss)) else: # evaluating - x_c1 = x_c1.view(-1, c, h, w) - x_c_c1, x_p_c1 = self.ae(x_c1) - _, c_c, h_c, w_c = x_c_c1.size() - x_c_c1 = x_c_c1.view(t, n, c_c, h_c, w_c) - x_p_c1 = x_p_c1.view(t, n, c, h, w) - - return (x_c_c1, x_p_c1), None + x_c1_ = x_c1.view(t * n, c, h, w) + (f_c_c1_, f_p_c1_) = self.ae(x_c1_) + + # Canonical features + f_c_c1 = f_c_c1_.view(t, n, -1) + f_c_c1_mean = f_c_c1.mean(0) + x_c_c1 = self.ae.decoder( + torch.zeros((n, self.f_a_dim)), + f_c_c1_mean, + torch.zeros((n, self.f_p_dim)), + cano_only=True + ) + + # Pose features + x_p_c1_ = self.ae.decoder( + torch.zeros((t * n, self.f_a_dim)), + torch.zeros((t * n, self.f_c_dim)), + f_p_c1_ + ) + x_p_c1 = x_p_c1_.view(t, n, c, h, w) + + return (x_c_c1, x_p_c1), None, None @staticmethod - def _pose_sim_loss(f_p_c1: list[torch.Tensor], - f_p_c2: list[torch.Tensor]) -> torch.Tensor: - f_p_c1_mean = torch.stack(f_p_c1).mean(dim=0) - f_p_c2_mean = torch.stack(f_p_c2).mean(dim=0) + def _pose_sim_loss(f_p_c1: torch.Tensor, + f_p_c2: torch.Tensor) -> torch.Tensor: + f_p_c1_mean = f_p_c1.mean(dim=0) + f_p_c2_mean = f_p_c2.mean(dim=0) return F.mse_loss(f_p_c1_mean, f_p_c2_mean) |