summaryrefslogtreecommitdiff
path: root/models
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-02-18 18:34:06 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-02-18 18:34:06 +0800
commit84a3d5991f2f7272d1be54ad6cfe6ce695f915a0 (patch)
treef0ab13ef2118e773f10d77e9926012569e6611ec /models
parente6703e1fff20975bada71ce12644e0c8e58c1922 (diff)
Implement adjustable input size and change some default configs
Diffstat (limited to 'models')
-rw-r--r--models/auto_encoder.py81
-rw-r--r--models/model.py6
-rw-r--r--models/rgb_part_net.py3
3 files changed, 54 insertions, 36 deletions
diff --git a/models/auto_encoder.py b/models/auto_encoder.py
index a9312dd..2d715db 100644
--- a/models/auto_encoder.py
+++ b/models/auto_encoder.py
@@ -11,39 +11,46 @@ class Encoder(nn.Module):
def __init__(
self,
in_channels: int = 3,
+ frame_size: tuple[int, int] = (64, 48),
feature_channels: int = 64,
output_dims: tuple[int, int, int] = (128, 128, 64)
):
super().__init__()
self.feature_channels = feature_channels
+ h_0, w_0 = frame_size
+ h_1, w_1 = h_0 // 2, w_0 // 2
+ h_2, w_2 = h_1 // 2, w_1 // 2
+ self.feature_size = self.h_3, self.w_3 = h_2 // 4, w_2 // 4
# Appearance features, canonical features, pose features
(self.f_a_dim, self.f_c_dim, self.f_p_dim) = output_dims
- # Conv1 in_channels x 64 x 32
- # -> feature_map_size x 64 x 32
+ # Conv1 in_channels x H x W
+ # -> feature_map_size x H x W
self.conv1 = VGGConv2d(in_channels, feature_channels)
- # MaxPool1 feature_map_size x 64 x 32
- # -> feature_map_size x 32 x 16
- self.max_pool1 = nn.AdaptiveMaxPool2d((32, 16))
- # Conv2 feature_map_size x 32 x 16
- # -> (feature_map_size*4) x 32 x 16
+ # MaxPool1 feature_map_size x H x W
+ # -> feature_map_size x H//2 x W//2
+ self.max_pool1 = nn.AdaptiveMaxPool2d((h_1, w_1))
+ # Conv2 feature_map_size x H//2 x W//2
+ # -> feature_map_size*4 x H//2 x W//2
self.conv2 = VGGConv2d(feature_channels, feature_channels * 4)
- # MaxPool2 (feature_map_size*4) x 32 x 16
- # -> (feature_map_size*4) x 16 x 8
- self.max_pool2 = nn.AdaptiveMaxPool2d((16, 8))
- # Conv3 (feature_map_size*4) x 16 x 8
- # -> (feature_map_size*8) x 16 x 8
+ # MaxPool2 feature_map_size*4 x H//2 x W//2
+ # -> feature_map_size*4 x H//4 x W//4
+ self.max_pool2 = nn.AdaptiveMaxPool2d((h_2, w_2))
+ # Conv3 feature_map_size*4 x H//4 x W//4
+ # -> feature_map_size*8 x H//4 x W//4
self.conv3 = VGGConv2d(feature_channels * 4, feature_channels * 8)
- # Conv4 (feature_map_size*8) x 16 x 8
- # -> (feature_map_size*8) x 16 x 8 (for large dataset)
+ # Conv4 feature_map_size*8 x H//4 x W//4
+ # -> feature_map_size*8 x H//4 x W//4 (for large dataset)
self.conv4 = VGGConv2d(feature_channels * 8, feature_channels * 8)
- # MaxPool3 (feature_map_size*8) x 16 x 8
- # -> (feature_map_size*8) x 4 x 2
- self.max_pool3 = nn.AdaptiveMaxPool2d((4, 2))
+ # MaxPool3 feature_map_size*8 x H//4 x W//4
+ # -> feature_map_size*8 x H//16 x W//16
+ self.max_pool3 = nn.AdaptiveMaxPool2d(self.feature_size)
embedding_dim = sum(output_dims)
- # FC (feature_map_size*8) * 4 * 2 -> 320
- self.fc = BasicLinear(feature_channels * 8 * 2 * 4, embedding_dim)
+ # FC feature_map_size*8 * H//16 * W//16 -> embedding_dim
+ self.fc = BasicLinear(
+ (feature_channels * 8) * self.h_3 * self.w_3, embedding_dim
+ )
def forward(self, x):
x = self.conv1(x)
@@ -53,7 +60,7 @@ class Encoder(nn.Module):
x = self.conv3(x)
x = self.conv4(x)
x = self.max_pool3(x)
- x = x.view(-1, (self.feature_channels * 8) * 2 * 4)
+ x = x.view(-1, (self.feature_channels * 8) * self.h_3 * self.w_3)
embedding = self.fc(x)
f_appearance, f_canonical, f_pose = embedding.split(
@@ -69,36 +76,41 @@ class Decoder(nn.Module):
self,
input_dims: tuple[int, int, int] = (128, 128, 64),
feature_channels: int = 64,
+ feature_size: tuple[int, int] = (4, 3),
out_channels: int = 3,
):
super().__init__()
self.feature_channels = feature_channels
+ self.h_0, self.w_0 = feature_size
embedding_dim = sum(input_dims)
- # FC 320 -> (feature_map_size*8) * 4 * 2
- self.fc = BasicLinear(embedding_dim, feature_channels * 8 * 2 * 4)
+ # FC 320 -> feature_map_size*8 * H * W
+ self.fc = BasicLinear(
+ embedding_dim, (feature_channels * 8) * self.h_0 * self.w_0
+ )
- # TransConv1 (feature_map_size*8) x 4 x 2
- # -> (feature_map_size*4) x 8 x 4
+ # TransConv1 feature_map_size*8 x H x W
+ # -> feature_map_size*4 x H*2 x W*2
self.trans_conv1 = DCGANConvTranspose2d(feature_channels * 8,
feature_channels * 4)
- # TransConv2 (feature_map_size*4) x 8 x 4
- # -> (feature_map_size*2) x 16 x 8
+ # TransConv2 feature_map_size*4 x H*2 x W*2
+ # -> feature_map_size*2 x H*4 x W*4
self.trans_conv2 = DCGANConvTranspose2d(feature_channels * 4,
feature_channels * 2)
- # TransConv3 (feature_map_size*2) x 16 x 8
- # -> feature_map_size x 32 x 16
+ # TransConv3 feature_map_size*2 x H*4 x W*4
+ # -> feature_map_size x H*8 x W*8
self.trans_conv3 = DCGANConvTranspose2d(feature_channels * 2,
feature_channels)
- # TransConv4 feature_map_size x 32 x 16
- # -> in_channels x 64 x 32
+ # TransConv4 feature_map_size x H*8 x W*8
+ # -> in_channels x H*16 x W*16
self.trans_conv4 = DCGANConvTranspose2d(feature_channels, out_channels,
is_last_layer=True)
def forward(self, f_appearance, f_canonical, f_pose, cano_only=False):
x = torch.cat((f_appearance, f_canonical, f_pose), dim=1)
x = self.fc(x)
- x = F.relu(x.view(-1, self.feature_channels * 8, 4, 2), inplace=True)
+ x = x.view(-1, self.feature_channels * 8, self.h_0, self.w_0)
+ x = F.relu(x, inplace=True)
x = self.trans_conv1(x)
x = self.trans_conv2(x)
if cano_only:
@@ -113,12 +125,15 @@ class AutoEncoder(nn.Module):
def __init__(
self,
channels: int = 3,
+ frame_size: tuple[int, int] = (64, 48),
feature_channels: int = 64,
embedding_dims: tuple[int, int, int] = (128, 128, 64)
):
super().__init__()
- self.encoder = Encoder(channels, feature_channels, embedding_dims)
- self.decoder = Decoder(embedding_dims, feature_channels, channels)
+ self.encoder = Encoder(channels, frame_size,
+ feature_channels, embedding_dims)
+ self.decoder = Decoder(embedding_dims, feature_channels,
+ self.encoder.feature_size, channels)
def forward(self, x_c1_t2, x_c1_t1=None, x_c2_t2=None):
n, t, c, h, w = x_c1_t2.size()
diff --git a/models/model.py b/models/model.py
index 139fd59..3f5d283 100644
--- a/models/model.py
+++ b/models/model.py
@@ -55,6 +55,7 @@ class Model:
self.is_train: bool = True
self.in_channels: int = 3
+ self.in_size: tuple[int, int] = (64, 48)
self.pr: Optional[int] = None
self.k: Optional[int] = None
@@ -147,7 +148,7 @@ class Model:
hpm_optim_hp = optim_hp.pop('hpm', {})
fc_optim_hp = optim_hp.pop('fc', {})
sched_hp = self.hp.get('scheduler', {})
- self.rgb_pn = RGBPartNet(self.in_channels, **model_hp,
+ self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp,
image_log_on=self.image_log_on)
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
@@ -299,7 +300,7 @@ class Model:
# Init models
model_hp = self.hp.get('model', {})
- self.rgb_pn = RGBPartNet(ae_in_channels=self.in_channels, **model_hp)
+ self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp)
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
self.rgb_pn.eval()
@@ -459,6 +460,7 @@ class Model:
dataset_config: DatasetConfiguration
) -> Union[CASIAB]:
self.in_channels = dataset_config.get('num_input_channels', 3)
+ self.in_size = dataset_config.get('frame_size', (64, 48))
self._dataset_sig = self._make_signature(
dataset_config,
popped_keys=['root_dir', 'cache_on']
diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py
index c3954bc..67acac3 100644
--- a/models/rgb_part_net.py
+++ b/models/rgb_part_net.py
@@ -11,6 +11,7 @@ class RGBPartNet(nn.Module):
def __init__(
self,
ae_in_channels: int = 3,
+ ae_in_size: tuple[int, int] = (64, 48),
ae_feature_channels: int = 64,
f_a_c_p_dims: tuple[int, int, int] = (128, 128, 64),
hpm_use_1x1conv: bool = False,
@@ -33,7 +34,7 @@ class RGBPartNet(nn.Module):
self.image_log_on = image_log_on
self.ae = AutoEncoder(
- ae_in_channels, ae_feature_channels, f_a_c_p_dims
+ ae_in_channels, ae_in_size, ae_feature_channels, f_a_c_p_dims
)
self.pn = PartNet(
ae_in_channels, fpfe_feature_channels, fpfe_kernel_sizes,