diff options
author | Jordan Gong <jordan.gong@protonmail.com> | 2021-03-01 18:20:38 +0800 |
---|---|---|
committer | Jordan Gong <jordan.gong@protonmail.com> | 2021-03-01 18:20:38 +0800 |
commit | 6002b2d2017912f90e8917e6e8b71b78ce58e7c2 (patch) | |
tree | 6e07253beaf2cee5baf4e5fd9596ed71875744b4 /models | |
parent | 7318a09451852e3f7d5f68180964f03bd0b0f616 (diff) |
New scheduler and new config
Diffstat (limited to 'models')
-rw-r--r-- | models/model.py | 27 |
1 files changed, 14 insertions, 13 deletions
diff --git a/models/model.py b/models/model.py index b942eb8..497a0ea 100644 --- a/models/model.py +++ b/models/model.py @@ -147,7 +147,6 @@ class Model: triplet_is_mean = model_hp.pop('triplet_is_mean', True) triplet_margins = model_hp.pop('triplet_margins', None) optim_hp: dict = self.hp.get('optimizer', {}).copy() - start_iter = optim_hp.pop('start_iter', 0) ae_optim_hp = optim_hp.pop('auto_encoder', {}) pn_optim_hp = optim_hp.pop('part_net', {}) hpm_optim_hp = optim_hp.pop('hpm', {}) @@ -184,14 +183,17 @@ class Model: {'params': self.rgb_pn.hpm.parameters(), **hpm_optim_hp}, {'params': self.rgb_pn.fc_mat, **fc_optim_hp} ], **optim_hp) - sched_gamma = sched_hp.get('gamma', 0.9) - sched_step_size = sched_hp.get('step_size', 500) + sched_final_gamma = sched_hp.get('final_gamma', 0.001) + sched_start_step = sched_hp.get('start_step', 15_000) + + def lr_lambda(epoch): + passed_step = epoch - sched_start_step + all_step = self.total_iter - sched_start_step + return sched_final_gamma ** (passed_step / all_step) self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=[ - lambda epoch: sched_gamma ** (epoch // sched_step_size), - lambda epoch: 0 if epoch < start_iter else 1, - lambda epoch: 0 if epoch < start_iter else 1, - lambda epoch: 0 if epoch < start_iter else 1, + lr_lambda, lr_lambda, lr_lambda, lr_lambda ]) + self.writer = SummaryWriter(self._log_name) self.rgb_pn.train() @@ -211,7 +213,7 @@ class Model: running_loss = torch.zeros(5, device=self.device) print(f"{'Time':^8} {'Iter':^5} {'Loss':^6}", f"{'Xrecon':^8} {'CanoCons':^8} {'PoseSim':^8}", - f"{'BATripH':^8} {'BATripP':^8} {'LRs':^19}") + f"{'BATripH':^8} {'BATripP':^8} {'LR':^9}") for (batch_c1, batch_c2) in dataloader: self.curr_iter += 1 # Zero the parameter gradients @@ -282,10 +284,7 @@ class Model: lrs = self.scheduler.get_last_lr() # Write learning rates self.writer.add_scalar( - 'Learning rate/Auto-encoder', lrs[0], self.curr_iter - ) - self.writer.add_scalar( - 'Learning rate/Others', lrs[1], self.curr_iter + 'Learning rate', lrs[0], self.curr_iter ) # Write disentangled images if self.image_log_on: @@ -309,7 +308,7 @@ class Model: print(f'{hour:02}:{minute:02}:{second:02}', f'{self.curr_iter:5d} {running_loss.sum() / 100:6.3f}', '{:f} {:f} {:f} {:f} {:f}'.format(*running_loss / 100), - '{:.3e} {:.3e}'.format(lrs[0], lrs[1])) + f'{lrs[0]:.3e}') running_loss.zero_() # Step scheduler @@ -385,6 +384,8 @@ class Model: # Init models model_hp: dict = self.hp.get('model', {}).copy() + model_hp.pop('triplet_is_hard', True) + model_hp.pop('triplet_is_mean', True) model_hp.pop('triplet_margins', None) self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp) # Try to accelerate computation using CUDA or others |