summaryrefslogtreecommitdiff
path: root/modules
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2020-12-23 18:59:08 +0800
committerJordan Gong <jordan.gong@protonmail.com>2020-12-23 18:59:08 +0800
commit96f345d25237c7e616ea5f524a2fc2d340ed8aff (patch)
tree9791c394d147f39d45ecab2a1ea5f83b396f3568 /modules
parent74a3df70a47630b7e95abc09197d23de9b81d4de (diff)
Split modules to different files
Diffstat (limited to 'modules')
-rw-r--r--modules/layers.py220
1 files changed, 0 insertions, 220 deletions
diff --git a/modules/layers.py b/modules/layers.py
deleted file mode 100644
index a0116e2..0000000
--- a/modules/layers.py
+++ /dev/null
@@ -1,220 +0,0 @@
-import copy
-from typing import Union, Tuple
-
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-
-class Encoder(nn.Module):
- def __init__(self, in_channels: int, opt):
- super(Encoder, self).__init__()
- self.opt = opt
- self.em_dim = opt.em_dim
- nf = 64
-
- # Cx[HxW]
- # Conv1 3x64x32 -> 64x64x32
- self.conv1 = nn.Conv2d(in_channels, nf, kernel_size=3, padding=1)
- self.batch_norm1 = nn.BatchNorm2d(nf)
- # MaxPool1 64x64x32 -> 64x32x16
- self.max_pool1 = nn.AdaptiveMaxPool2d((32, 16))
- # Conv2 64x32x16 -> 256x32x16
- self.conv2 = nn.Conv2d(nf, nf * 4, kernel_size=3, padding=1)
- self.batch_norm2 = nn.BatchNorm2d(nf * 4)
- # MaxPool2 256x32x16 -> 256x16x8
- self.max_pool2 = nn.AdaptiveMaxPool2d((16, 8))
- # Conv3 256x16x8 -> 512x16x8
- self.conv3 = nn.Conv2d(nf * 4, nf * 8, kernel_size=3, padding=1)
- self.batch_norm3 = nn.BatchNorm2d(nf * 8)
- # Conv4 512x16x8 -> 512x16x8 (for large dataset)
- self.conv4 = nn.Conv2d(nf * 8, nf * 8, kernel_size=3, padding=1)
- self.batch_norm4 = nn.BatchNorm2d(nf * 8)
- # MaxPool3 512x16x8 -> 512x4x2
- self.max_pool3 = nn.AdaptiveMaxPool2d((4, 2))
- # FC 512*4*2 -> 320
- self.fc = nn.Linear(nf * 8 * 2 * 4, self.em_dim)
- self.batch_norm_fc = nn.BatchNorm1d(self.em_dim)
-
- def forward(self, x):
- x = F.leaky_relu(self.batch_norm1(self.conv1(x)), 0.2)
- x = self.max_pool1(x)
- x = F.leaky_relu(self.batch_norm2(self.conv2(x)), 0.2)
- x = self.max_pool2(x)
- x = F.leaky_relu(self.batch_norm3(self.conv3(x)), 0.2)
- x = F.leaky_relu(self.batch_norm4(self.conv4(x)), 0.2)
- x = self.max_pool3(x)
- x = x.view(-1, (64 * 8) * 2 * 4)
- embedding = self.batch_norm_fc(self.fc(x))
-
- fa, fgs, fgd = embedding.split(
- (self.opt.fa_dim, self.opt.fg_dim / 2, self.opt.fg_dim / 2), dim=1
- )
- return fa, fgs, fgd
-
-
-class Decoder(nn.Module):
- def __init__(self, out_channels: int, opt):
- super(Decoder, self).__init__()
- self.em_dim = opt.em_dim
- nf = 64
-
- # Cx[HxW]
- # FC 320 -> 512*4*2
- self.fc = nn.Linear(self.em_dim, nf * 8 * 2 * 4)
- self.batch_norm_fc = nn.BatchNorm1d(nf * 8 * 2 * 4)
- # TransConv1 512x4x2 -> 256x8x4
- self.trans_conv1 = nn.ConvTranspose2d(nf * 8, nf * 4, kernel_size=4,
- stride=2, padding=1)
- self.batch_norm1 = nn.BatchNorm2d(nf * 4)
- # TransConv2 256x8x4 -> 128x16x8
- self.trans_conv2 = nn.ConvTranspose2d(nf * 4, nf * 2, kernel_size=4,
- stride=2, padding=1)
- self.batch_norm2 = nn.BatchNorm2d(nf * 2)
- # TransConv3 128x16x8 -> 64x32x16
- self.trans_conv3 = nn.ConvTranspose2d(nf * 2, nf, kernel_size=4,
- stride=2, padding=1)
- self.batch_norm3 = nn.BatchNorm2d(nf)
- # TransConv4 3x32x16
- self.trans_conv4 = nn.ConvTranspose2d(nf, out_channels, kernel_size=4,
- stride=2, padding=1)
-
- def forward(self, fa, fgs, fgd):
- x = torch.cat((fa, fgs, fgd), dim=1).view(-1, self.em_dim)
- x = F.leaky_relu(self.batch_norm_fc(self.fc(x)), 0.2)
- x = F.leaky_relu(self.batch_norm1(self.trans_conv1(x)), 0.2)
- x = F.leaky_relu(self.batch_norm2(self.trans_conv2(x)), 0.2)
- x = F.leaky_relu(self.batch_norm3(self.trans_conv3(x)), 0.2)
- x = F.sigmoid(self.trans_conv4(x))
-
- return x
-
-
-class FocalConv2d(nn.Module):
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: Union[int, Tuple[int, int]],
- halving: int,
- **kwargs
- ):
- super(FocalConv2d, self).__init__()
- self.halving = halving
- self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
- bias=False, **kwargs)
-
- def forward(self, x):
- h = x.size(2)
- split_size = h // 2 ** self.halving
- z = x.split(split_size, dim=2)
- z = torch.cat([self.conv(_) for _ in z], dim=2)
- return F.leaky_relu(z, inplace=True)
-
-
-class FrameLevelPartFeatureExtractor(nn.Module):
-
- def __init__(self, in_channels: int):
- super(FrameLevelPartFeatureExtractor, self).__init__()
- nf = 32
-
- self.focal_conv1 = FocalConv2d(in_channels, nf, kernel_size=5,
- padding=2, halving=1)
- self.focal_conv2 = FocalConv2d(nf, nf, kernel_size=3,
- padding=1, halving=1)
- self.focal_conv3 = FocalConv2d(nf, nf * 2, kernel_size=3,
- padding=1, halving=4)
- self.focal_conv4 = FocalConv2d(nf * 2, nf * 2, kernel_size=3,
- padding=1, halving=4)
- self.focal_conv5 = FocalConv2d(nf * 2, nf * 4, kernel_size=3,
- padding=1, halving=8)
- self.focal_conv6 = FocalConv2d(nf * 4, nf * 4, kernel_size=3,
- padding=1, halving=8)
- self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
-
- def forward(self, x):
- x = F.leaky_relu(self.focal_conv1(x))
- x = F.leaky_relu(self.focal_conv2(x))
- x = self.max_pool(x)
- x = F.leaky_relu(self.focal_conv3(x))
- x = F.leaky_relu(self.focal_conv4(x))
- x = self.max_pool(x)
- x = F.leaky_relu(self.focal_conv5(x))
- x = F.leaky_relu(self.focal_conv6(x))
-
- return x
-
-
-class TemporalFeatureAggregator(nn.Module):
- def __init__(
- self,
- in_channels: int,
- squeeze: int = 4,
- num_part: int = 16
- ):
- super(TemporalFeatureAggregator, self).__init__()
- hidden_dim = in_channels // squeeze
- self.num_part = num_part
-
- # MTB1
- conv3x1 = nn.Sequential(
- nn.Conv1d(in_channels, hidden_dim,
- kernel_size=3, padding=1, bias=False),
- nn.LeakyReLU(inplace=True),
- nn.Conv1d(hidden_dim, in_channels,
- kernel_size=1, padding=0, bias=False)
- )
- self.conv1d3x1 = self._parted(conv3x1)
- self.avg_pool3x1 = nn.AvgPool1d(kernel_size=3, stride=1, padding=1)
- self.max_pool3x1 = nn.MaxPool1d(kernel_size=3, stride=1, padding=1)
-
- # MTB2
- conv3x3 = nn.Sequential(
- nn.Conv1d(in_channels, hidden_dim,
- kernel_size=3, padding=1, bias=False),
- nn.LeakyReLU(inplace=True),
- nn.Conv1d(hidden_dim, in_channels,
- kernel_size=3, padding=1, bias=False)
- )
- self.conv1d3x3 = self._parted(conv3x3)
- self.avg_pool3x3 = nn.AvgPool1d(kernel_size=5, stride=1, padding=2)
- self.max_pool3x3 = nn.MaxPool1d(kernel_size=5, stride=1, padding=2)
-
- def _parted(self, module: nn.Module):
- """Duplicate module `part_num` times."""
- return nn.ModuleList([copy.deepcopy(module)
- for _ in range(self.num_part)])
-
- def forward(self, x):
- """
- Input: x, [p, n, c, s]
- """
- p, n, c, s = x.size()
- feature = x.split(1, 0)
- x = x.view(-1, c, s)
-
- # MTB1: ConvNet1d & Sigmoid
- logits3x1 = torch.cat(
- [conv(_.squeeze(0)).unsqueeze(0)
- for conv, _ in zip(self.conv1d3x1, feature)], dim=0
- )
- scores3x1 = torch.sigmoid(logits3x1)
- # MTB1: Template Function
- feature3x1 = self.avg_pool3x1(x) + self.max_pool3x1(x)
- feature3x1 = feature3x1.view(p, n, c, s)
- feature3x1 = feature3x1 * scores3x1
-
- # MTB2: ConvNet1d & Sigmoid
- logits3x3 = torch.cat(
- [conv(_.squeeze(0)).unsqueeze(0)
- for conv, _ in zip(self.conv1d3x3, feature)], dim=0
- )
- scores3x3 = torch.sigmoid(logits3x3)
- # MTB2: Template Function
- feature3x3 = self.avg_pool3x3(x) + self.max_pool3x3(x)
- feature3x3 = feature3x3.view(p, n, c, s)
- feature3x3 = feature3x3 * scores3x3
-
- # Temporal Pooling
- ret = (feature3x1 + feature3x3).max(-1)[0]
- return ret