summaryrefslogtreecommitdiff
path: root/test/part_net.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-01-03 15:08:19 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-01-03 15:08:19 +0800
commit2ac1787e4580521848460215e6b06f4bb1648f06 (patch)
tree75e4121a89b38f69c600711bac9e3734294f7d83 /test/part_net.py
parent2e6a6d5bda3ddea10afda8e07d2cfe5697a26de3 (diff)
Unit testing on auto-encoder, HPM and Part Net
Diffstat (limited to 'test/part_net.py')
-rw-r--r--test/part_net.py71
1 files changed, 71 insertions, 0 deletions
diff --git a/test/part_net.py b/test/part_net.py
new file mode 100644
index 0000000..25e92ae
--- /dev/null
+++ b/test/part_net.py
@@ -0,0 +1,71 @@
+import torch
+
+from models.part_net import FrameLevelPartFeatureExtractor, \
+ TemporalFeatureAggregator, PartNet
+
+T, N, C, H, W = 15, 4, 3, 64, 32
+
+
+def test_default_fpfe():
+ fpfe = FrameLevelPartFeatureExtractor()
+ x = torch.rand(T, N, C, H, W)
+ x = fpfe(x)
+
+ assert tuple(x.size()) == (T * N, 32 * 4, 16, 8)
+
+
+def test_custom_fpfe():
+ feature_channels = 64
+ fpfe = FrameLevelPartFeatureExtractor(
+ in_channels=1,
+ feature_channels=feature_channels,
+ kernel_sizes=((5, 3), (3, 3), (3, 3), (3, 3)),
+ paddings=((2, 1), (1, 1), (1, 1), (1, 1)),
+ halving=(1, 1, 3, 3)
+ )
+ x = torch.rand(T, N, 1, H, W)
+ x = fpfe(x)
+
+ assert tuple(x.size()) == (T * N, feature_channels * 8, 8, 4)
+
+
+def test_default_tfa():
+ in_channels = 32 * 4
+ tfa = TemporalFeatureAggregator(in_channels)
+ x = torch.rand(16, T, N, in_channels)
+ x = tfa(x)
+
+ assert tuple(x.size()) == (16, N, in_channels)
+
+
+def test_custom_tfa():
+ in_channels = 64 * 8
+ num_part = 8
+ tfa = TemporalFeatureAggregator(in_channels=in_channels,
+ squeeze_ratio=8, num_part=num_part)
+ x = torch.rand(num_part, T, N, in_channels)
+ x = tfa(x)
+
+ assert tuple(x.size()) == (num_part, N, in_channels)
+
+
+def test_default_part_net():
+ pa = PartNet()
+ x = torch.rand(T, N, C, H, W)
+ x = pa(x)
+
+ assert tuple(x.size()) == (16, N, 32 * 4)
+
+
+def test_custom_part_net():
+ feature_channels = 64
+ pa = PartNet(in_channels=1, feature_channels=feature_channels,
+ kernel_sizes=((5, 3), (3, 3), (3, 3), (3, 3)),
+ paddings=((2, 1), (1, 1), (1, 1), (1, 1)),
+ halving=(1, 1, 3, 3),
+ squeeze_ratio=8,
+ num_part=8)
+ x = torch.rand(T, N, 1, H, W)
+ x = pa(x)
+
+ assert tuple(x.size()) == (8, N, pa.tfa_in_channels)