summaryrefslogtreecommitdiff
path: root/utils/dataset.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-02-19 22:43:17 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-02-19 22:43:17 +0800
commit4049566103a00aa6d5a0b1f73569bdc5435714ca (patch)
treed84604773f05eab030ff2106c43cb2c091b6e8fc /utils/dataset.py
parentd12dd6b04a4e7c2b1ee43ab6f36f25d0c35ca364 (diff)
parent969030864495e7c2b419400fd81ee0fad83de41e (diff)
Merge branch 'python3.8' into disentangling_only_py3.8
# Conflicts: # models/hpm.py # models/layers.py # models/model.py # models/part_net.py # models/rgb_part_net.py # utils/configuration.py
Diffstat (limited to 'utils/dataset.py')
-rw-r--r--utils/dataset.py28
1 files changed, 14 insertions, 14 deletions
diff --git a/utils/dataset.py b/utils/dataset.py
index c487988..72cf050 100644
--- a/utils/dataset.py
+++ b/utils/dataset.py
@@ -1,7 +1,7 @@
import os
import random
import re
-from typing import Optional, NewType, Union
+from typing import Optional, NewType, Union, List, Tuple, Set, Dict
import numpy as np
import torch
@@ -11,9 +11,9 @@ from sklearn.preprocessing import LabelEncoder
from torch.utils import data
from tqdm import tqdm
-ClipClasses = NewType('ClipClasses', set[str])
-ClipConditions = NewType('ClipConditions', set[str])
-ClipViews = NewType('ClipViews', set[str])
+ClipClasses = NewType('ClipClasses', Set[str])
+ClipConditions = NewType('ClipConditions', Set[str])
+ClipViews = NewType('ClipViews', Set[str])
class CASIAB(data.Dataset):
@@ -27,11 +27,11 @@ class CASIAB(data.Dataset):
num_sampled_frames: int = 30,
truncate_threshold: int = 40,
discard_threshold: int = 15,
- selector: Optional[dict[
+ selector: Optional[Dict[
str, Union[ClipClasses, ClipConditions, ClipViews]
]] = None,
num_input_channels: int = 3,
- frame_size: tuple[int, int] = (64, 32),
+ frame_size: Tuple[int, int] = (64, 32),
cache_on: bool = False
):
"""
@@ -79,15 +79,15 @@ class CASIAB(data.Dataset):
self.views: np.ndarray[np.str_]
# Labels, classes, conditions and views in dataset,
# set of three attributes above
- self.metadata: dict[str, list[np.int64, str]]
+ self.metadata: Dict[str, List[np.int64, str]]
# Dictionaries for indexing frames and frame names by clip name
# and chip path when cache is on
- self._cached_clips_frame_names: Optional[dict[str, list[str]]] = None
- self._cached_clips: Optional[dict[str, torch.Tensor]] = None
+ self._cached_clips_frame_names: Optional[Dict[str, List[str]]] = None
+ self._cached_clips: Optional[Dict[str, torch.Tensor]] = None
# Video clip directory names
- self._clip_names: list[str] = []
+ self._clip_names: List[str] = []
clip_names = sorted(os.listdir(self._root_dir))
if self._is_train:
@@ -174,7 +174,7 @@ class CASIAB(data.Dataset):
def __getitem__(
self,
index: int
- ) -> dict[str, Union[np.int64, str, torch.Tensor]]:
+ ) -> Dict[str, Union[np.int64, str, torch.Tensor]]:
label = self.labels[index]
condition = self.conditions[index]
view = self.views[index]
@@ -222,8 +222,8 @@ class CASIAB(data.Dataset):
def _load_cached_video(
self,
clip: torch.Tensor,
- frame_names: list[str],
- sampled_frame_names: list[str]
+ frame_names: List[str],
+ sampled_frame_names: List[str]
) -> torch.Tensor:
# Mask the original clip when it is long enough
if len(frame_names) >= self._num_sampled_frames:
@@ -253,7 +253,7 @@ class CASIAB(data.Dataset):
return clip
def _sample_frames(self, clip_path: str,
- is_caching: bool = False) -> list[str]:
+ is_caching: bool = False) -> List[str]:
if self._cache_on:
if is_caching:
# Sort frame in advance for loading convenience