summaryrefslogtreecommitdiff
path: root/utils/triplet_loss.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-03-12 20:12:33 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-03-12 20:12:33 +0800
commite83ae0bcb5c763636fd522c2712a3c8aef558f3c (patch)
treeb80da057e4c4574ea95fa9f3d3b2fe8c999e3440 /utils/triplet_loss.py
parentf2f7713efa03a877bc96ced37314b4c4a6dc1963 (diff)
parent2ea916b2a963eae7d47151b41c8c78a578c402e2 (diff)
Merge branch 'master' into data_parallel
# Conflicts: # models/auto_encoder.py # models/model.py # models/rgb_part_net.py
Diffstat (limited to 'utils/triplet_loss.py')
-rw-r--r--utils/triplet_loss.py40
1 files changed, 0 insertions, 40 deletions
diff --git a/utils/triplet_loss.py b/utils/triplet_loss.py
index e05b69d..03fff21 100644
--- a/utils/triplet_loss.py
+++ b/utils/triplet_loss.py
@@ -85,43 +85,3 @@ class BatchTripletLoss(nn.Module):
non_zero_mean = losses.sum(1) / non_zero_counts
non_zero_mean[non_zero_counts == 0] = 0
return non_zero_mean
-
-
-class JointBatchTripletLoss(BatchTripletLoss):
- def __init__(
- self,
- hpm_num_parts: int,
- is_hard: bool = True,
- is_mean: bool = True,
- margins: tuple[float, float] = (0.2, 0.2)
- ):
- super().__init__(is_hard, is_mean)
- self.hpm_num_parts = hpm_num_parts
- self.margin_hpm, self.margin_pn = margins
-
- def forward(self, x, y):
- p, n, c = x.size()
- dist = self._batch_distance(x)
- flat_dist_mask = torch.tril_indices(n, n, offset=-1, device=dist.device)
- flat_dist = dist[:, flat_dist_mask[0], flat_dist_mask[1]]
-
- if self.is_hard:
- positive_negative_dist = self._hard_distance(dist, y, p, n)
- else: # is_all
- positive_negative_dist = self._all_distance(dist, y, p, n)
-
- hpm_part_loss = F.relu(
- self.margin_hpm + positive_negative_dist[:self.hpm_num_parts]
- )
- pn_part_loss = F.relu(
- self.margin_pn + positive_negative_dist[self.hpm_num_parts:]
- )
- losses = torch.cat((hpm_part_loss, pn_part_loss)).view(p, -1)
-
- non_zero_counts = (losses != 0).sum(1).float()
- if self.is_mean:
- loss_metric = self._none_zero_mean(losses, non_zero_counts)
- else: # is_sum
- loss_metric = losses.sum(1)
-
- return loss_metric, flat_dist, non_zero_counts