diff options
author | Jordan Gong <jordan.gong@protonmail.com> | 2021-03-12 20:12:33 +0800 |
---|---|---|
committer | Jordan Gong <jordan.gong@protonmail.com> | 2021-03-12 20:12:33 +0800 |
commit | e83ae0bcb5c763636fd522c2712a3c8aef558f3c (patch) | |
tree | b80da057e4c4574ea95fa9f3d3b2fe8c999e3440 /utils/triplet_loss.py | |
parent | f2f7713efa03a877bc96ced37314b4c4a6dc1963 (diff) | |
parent | 2ea916b2a963eae7d47151b41c8c78a578c402e2 (diff) |
Merge branch 'master' into data_parallel
# Conflicts:
# models/auto_encoder.py
# models/model.py
# models/rgb_part_net.py
Diffstat (limited to 'utils/triplet_loss.py')
-rw-r--r-- | utils/triplet_loss.py | 40 |
1 files changed, 0 insertions, 40 deletions
diff --git a/utils/triplet_loss.py b/utils/triplet_loss.py index e05b69d..03fff21 100644 --- a/utils/triplet_loss.py +++ b/utils/triplet_loss.py @@ -85,43 +85,3 @@ class BatchTripletLoss(nn.Module): non_zero_mean = losses.sum(1) / non_zero_counts non_zero_mean[non_zero_counts == 0] = 0 return non_zero_mean - - -class JointBatchTripletLoss(BatchTripletLoss): - def __init__( - self, - hpm_num_parts: int, - is_hard: bool = True, - is_mean: bool = True, - margins: tuple[float, float] = (0.2, 0.2) - ): - super().__init__(is_hard, is_mean) - self.hpm_num_parts = hpm_num_parts - self.margin_hpm, self.margin_pn = margins - - def forward(self, x, y): - p, n, c = x.size() - dist = self._batch_distance(x) - flat_dist_mask = torch.tril_indices(n, n, offset=-1, device=dist.device) - flat_dist = dist[:, flat_dist_mask[0], flat_dist_mask[1]] - - if self.is_hard: - positive_negative_dist = self._hard_distance(dist, y, p, n) - else: # is_all - positive_negative_dist = self._all_distance(dist, y, p, n) - - hpm_part_loss = F.relu( - self.margin_hpm + positive_negative_dist[:self.hpm_num_parts] - ) - pn_part_loss = F.relu( - self.margin_pn + positive_negative_dist[self.hpm_num_parts:] - ) - losses = torch.cat((hpm_part_loss, pn_part_loss)).view(p, -1) - - non_zero_counts = (losses != 0).sum(1).float() - if self.is_mean: - loss_metric = self._none_zero_mean(losses, non_zero_counts) - else: # is_sum - loss_metric = losses.sum(1) - - return loss_metric, flat_dist, non_zero_counts |