summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--config.py4
-rw-r--r--models/layers.py4
-rw-r--r--models/model.py74
-rw-r--r--requirements.txt2
-rw-r--r--utils/configuration.py1
-rw-r--r--utils/triplet_loss.py46
6 files changed, 98 insertions, 33 deletions
diff --git a/config.py b/config.py
index f76cea5..4c108e2 100644
--- a/config.py
+++ b/config.py
@@ -53,7 +53,7 @@ config: Configuration = {
# Use 1x1 convolution in dimensionality reduction
'hpm_use_1x1conv': False,
# HPM pyramid scales, of which sum is number of parts
- 'hpm_scales': (1, 2, 4),
+ 'hpm_scales': (1, 2, 4, 8),
# Global pooling method
'hpm_use_avg_pool': True,
'hpm_use_max_pool': True,
@@ -65,6 +65,8 @@ config: Configuration = {
'embedding_dims': 256,
# Batch Hard or Batch All
'triplet_is_hard': True,
+ # Use non-zero mean or sum
+ 'triplet_is_mean': True,
# Triplet loss margins for HPM and PartNet, None for soft margin
'triplet_margins': None,
},
diff --git a/models/layers.py b/models/layers.py
index ae61583..e30d0c4 100644
--- a/models/layers.py
+++ b/models/layers.py
@@ -80,7 +80,9 @@ class DCGANConvTranspose2d(BasicConvTranspose2d):
if self.is_last_layer:
return self.trans_conv(x)
else:
- return super().forward(x)
+ x = self.trans_conv(x)
+ x = self.bn(x)
+ return F.leaky_relu(x, 0.2, inplace=True)
class BasicLinear(nn.Module):
diff --git a/models/model.py b/models/model.py
index 591808a..48dcfaf 100644
--- a/models/model.py
+++ b/models/model.py
@@ -59,6 +59,8 @@ class Model:
self.in_size: Tuple[int, int] = (64, 48)
self.pr: Optional[int] = None
self.k: Optional[int] = None
+ self.num_pairs: Optional[int] = None
+ self.num_pos_pairs: Optional[int] = None
self._gallery_dataset_meta: Optional[Dict[str, List]] = None
self._probe_datasets_meta: Optional[Dict[str, Dict[str, List]]] = None
@@ -144,6 +146,7 @@ class Model:
# Prepare for model, optimizer and scheduler
model_hp: Dict = self.hp.get('model', {}).copy()
triplet_is_hard = model_hp.pop('triplet_is_hard', True)
+ triplet_is_mean = model_hp.pop('triplet_is_mean', True)
triplet_margins = model_hp.pop('triplet_margins', None)
optim_hp: Dict = self.hp.get('optimizer', {}).copy()
start_iter = optim_hp.pop('start_iter', 0)
@@ -163,10 +166,13 @@ class Model:
)
else: # Different margins
self.triplet_loss = JointBatchTripletLoss(
- self.rgb_pn.hpm_num_parts, triplet_is_hard, triplet_margins
+ self.rgb_pn.hpm_num_parts,
+ triplet_is_hard, triplet_is_mean, triplet_margins
)
else: # Soft margins
- self.triplet_loss = BatchTripletLoss(triplet_is_hard, None)
+ self.triplet_loss = BatchTripletLoss(
+ triplet_is_hard, triplet_is_mean, None
+ )
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
@@ -216,7 +222,7 @@ class Model:
y = batch_c1['label'].to(self.device)
# Duplicate labels for each part
y = y.repeat(self.rgb_pn.num_total_parts, 1)
- trip_loss, dist, non_zero_counts = self.triplet_loss(embedding, y)
+ trip_loss, dist, num_non_zero = self.triplet_loss(embedding, y)
losses = torch.cat((
ae_losses,
torch.stack((
@@ -240,18 +246,36 @@ class Model:
'HPM': losses[3],
'PartNet': losses[4]
}, self.curr_iter)
- self.writer.add_scalars('Loss/non-zero counts', {
- 'HPM': non_zero_counts[:self.rgb_pn.hpm_num_parts].mean(),
- 'PartNet': non_zero_counts[self.rgb_pn.hpm_num_parts:].mean()
- }, self.curr_iter)
- self.writer.add_scalars('Embedding/distance', {
- 'HPM': dist[:self.rgb_pn.hpm_num_parts].mean(),
- 'PartNet': dist[self.rgb_pn.hpm_num_parts].mean()
- }, self.curr_iter)
- self.writer.add_scalars('Embedding/2-norm', {
- 'HPM': embedding[:self.rgb_pn.hpm_num_parts].norm(),
- 'PartNet': embedding[self.rgb_pn.hpm_num_parts].norm()
- }, self.curr_iter)
+ # None-zero losses in batch
+ if num_non_zero is not None:
+ self.writer.add_scalars('Loss/non-zero counts', {
+ 'HPM': num_non_zero[:self.rgb_pn.hpm_num_parts].mean(),
+ 'PartNet': num_non_zero[self.rgb_pn.hpm_num_parts:].mean()
+ }, self.curr_iter)
+ # Embedding distance
+ mean_hpm_dist = dist[:self.rgb_pn.hpm_num_parts].mean(0)
+ self._add_ranked_scalars(
+ 'Embedding/HPM distance', mean_hpm_dist,
+ self.num_pos_pairs, self.num_pairs, self.curr_iter
+ )
+ mean_pa_dist = dist[self.rgb_pn.hpm_num_parts:].mean(0)
+ self._add_ranked_scalars(
+ 'Embedding/ParNet distance', mean_pa_dist,
+ self.num_pos_pairs, self.num_pairs, self.curr_iter
+ )
+ # Embedding norm
+ mean_hpm_embedding = embedding[:self.rgb_pn.hpm_num_parts].mean(0)
+ mean_hpm_norm = mean_hpm_embedding.norm(dim=-1)
+ self._add_ranked_scalars(
+ 'Embedding/HPM norm', mean_hpm_norm,
+ self.k, self.pr * self.k, self.curr_iter
+ )
+ mean_pa_embedding = embedding[self.rgb_pn.hpm_num_parts:].mean(0)
+ mean_pa_norm = mean_pa_embedding.norm(dim=-1)
+ self._add_ranked_scalars(
+ 'Embedding/PartNet norm', mean_pa_norm,
+ self.k, self.pr * self.k, self.curr_iter
+ )
if self.curr_iter % 100 == 0:
lrs = self.scheduler.get_last_lr()
@@ -303,6 +327,24 @@ class Model:
self.writer.close()
break
+ def _add_ranked_scalars(
+ self,
+ main_tag: str,
+ metric: torch.Tensor,
+ num_pos: int,
+ num_all: int,
+ global_step: int
+ ):
+ rank = metric.argsort()
+ pos_ile = 100 - (num_pos - 1) * 100 // num_all
+ self.writer.add_scalars(main_tag, {
+ '0%-ile': metric[rank[-1]],
+ f'{100 - pos_ile}%-ile': metric[rank[-num_pos]],
+ '50%-ile': metric[rank[num_all // 2 - 1]],
+ f'{pos_ile}%-ile': metric[rank[num_pos - 1]],
+ '100%-ile': metric[rank[0]]
+ }, global_step)
+
def predict_all(
self,
iters: Tuple[int],
@@ -524,6 +566,8 @@ class Model:
) -> DataLoader:
config: Dict = dataloader_config.copy()
(self.pr, self.k) = config.pop('batch_size', (8, 16))
+ self.num_pairs = (self.pr*self.k-1) * (self.pr*self.k) // 2
+ self.num_pos_pairs = (self.k*(self.k-1)//2) * self.pr
if self.is_train:
triplet_sampler = TripletSampler(dataset, (self.pr, self.k))
return DataLoader(dataset,
diff --git a/requirements.txt b/requirements.txt
index 4d30e17..926a587 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,6 +1,6 @@
torch~=1.7.1
torchvision~=0.8.0a0+ecf4e9c
numpy~=1.19.4
-tqdm~=4.57.0
+tqdm~=4.58.0
Pillow~=8.1.0
scikit-learn~=0.24.0 \ No newline at end of file
diff --git a/utils/configuration.py b/utils/configuration.py
index cf667ed..2959483 100644
--- a/utils/configuration.py
+++ b/utils/configuration.py
@@ -44,6 +44,7 @@ class ModelHPConfiguration(TypedDict):
tfa_num_parts: int
embedding_dims: int
triplet_is_hard: bool
+ triplet_is_mean: bool
triplet_margins: Tuple[float, float]
diff --git a/utils/triplet_loss.py b/utils/triplet_loss.py
index 22ac2ab..77c7234 100644
--- a/utils/triplet_loss.py
+++ b/utils/triplet_loss.py
@@ -9,15 +9,19 @@ class BatchTripletLoss(nn.Module):
def __init__(
self,
is_hard: bool = True,
+ is_mean: bool = True,
margin: Optional[float] = 0.2,
):
super().__init__()
self.is_hard = is_hard
+ self.is_mean = is_mean
self.margin = margin
def forward(self, x, y):
p, n, c = x.size()
dist = self._batch_distance(x)
+ flat_dist = dist.tril(-1)
+ flat_dist = flat_dist[flat_dist != 0].view(p, -1)
if self.is_hard:
positive_negative_dist = self._hard_distance(dist, y, p, n)
@@ -25,12 +29,20 @@ class BatchTripletLoss(nn.Module):
positive_negative_dist = self._all_distance(dist, y, p, n)
if self.margin:
- all_loss = F.relu(self.margin + positive_negative_dist).view(p, -1)
- else:
- all_loss = F.softplus(positive_negative_dist).view(p, -1)
- non_zero_mean, non_zero_counts = self._none_zero_parted_mean(all_loss)
-
- return non_zero_mean, dist.mean((1, 2)), non_zero_counts
+ losses = F.relu(self.margin + positive_negative_dist).view(p, -1)
+ non_zero_counts = (losses != 0).sum(1).float()
+ if self.is_mean:
+ loss_metric = self._none_zero_mean(losses, non_zero_counts)
+ else: # is_sum
+ loss_metric = losses.sum(1)
+ return loss_metric, flat_dist, non_zero_counts
+ else: # Soft margin
+ losses = F.softplus(positive_negative_dist).view(p, -1)
+ if self.is_mean:
+ loss_metric = losses.mean(1)
+ else: # is_sum
+ loss_metric = losses.sum(1)
+ return loss_metric, flat_dist, None
@staticmethod
def _batch_distance(x):
@@ -65,13 +77,11 @@ class BatchTripletLoss(nn.Module):
return positive_negative_dist
@staticmethod
- def _none_zero_parted_mean(all_loss):
+ def _none_zero_mean(losses, non_zero_counts):
# Non-zero parted mean
- non_zero_counts = (all_loss != 0).sum(1).float()
- non_zero_mean = all_loss.sum(1) / non_zero_counts
+ non_zero_mean = losses.sum(1) / non_zero_counts
non_zero_mean[non_zero_counts == 0] = 0
-
- return non_zero_mean, non_zero_counts
+ return non_zero_mean
class JointBatchTripletLoss(BatchTripletLoss):
@@ -79,9 +89,10 @@ class JointBatchTripletLoss(BatchTripletLoss):
self,
hpm_num_parts: int,
is_hard: bool = True,
+ is_mean: bool = True,
margins: Tuple[float, float] = (0.2, 0.2)
):
- super().__init__(is_hard)
+ super().__init__(is_hard, is_mean)
self.hpm_num_parts = hpm_num_parts
self.margin_hpm, self.margin_pn = margins
@@ -100,7 +111,12 @@ class JointBatchTripletLoss(BatchTripletLoss):
pn_part_loss = F.relu(
self.margin_pn + positive_negative_dist[self.hpm_num_parts:]
)
- all_loss = torch.cat((hpm_part_loss, pn_part_loss)).view(p, -1)
- non_zero_mean, non_zero_counts = self._none_zero_parted_mean(all_loss)
+ losses = torch.cat((hpm_part_loss, pn_part_loss)).view(p, -1)
+
+ non_zero_counts = (losses != 0).sum(1).float()
+ if self.is_mean:
+ loss_metric = self._none_zero_mean(losses, non_zero_counts)
+ else: # is_sum
+ loss_metric = losses.sum(1)
- return non_zero_mean, dist.mean((1, 2)), non_zero_counts
+ return loss_metric, dist, non_zero_counts