diff options
-rw-r--r-- | models/fpfe.py | 38 | ||||
-rw-r--r-- | models/layers.py | 27 | ||||
-rw-r--r-- | models/part_net.py (renamed from models/tfa.py) | 73 |
3 files changed, 96 insertions, 42 deletions
diff --git a/models/fpfe.py b/models/fpfe.py deleted file mode 100644 index 28a0440..0000000 --- a/models/fpfe.py +++ /dev/null @@ -1,38 +0,0 @@ -import torch.nn as nn - -from models.layers import FocalConv2d - - -class FrameLevelPartFeatureExtractor(nn.Module): - - def __init__(self, in_channels: int): - super(FrameLevelPartFeatureExtractor, self).__init__() - nf = 32 - - self.focal_conv1 = FocalConv2d(in_channels, nf, kernel_size=5, - padding=2, halving=1) - self.focal_conv2 = FocalConv2d(nf, nf, kernel_size=3, - padding=1, halving=1) - self.focal_conv3 = FocalConv2d(nf, nf * 2, kernel_size=3, - padding=1, halving=4) - self.focal_conv4 = FocalConv2d(nf * 2, nf * 2, kernel_size=3, - padding=1, halving=4) - self.focal_conv5 = FocalConv2d(nf * 2, nf * 4, kernel_size=3, - padding=1, halving=8) - self.focal_conv6 = FocalConv2d(nf * 4, nf * 4, kernel_size=3, - padding=1, halving=8) - self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2) - - def forward(self, x): - x = self.focal_conv1(x) - x = self.focal_conv2(x) - x = self.max_pool(x) - - x = self.focal_conv3(x) - x = self.focal_conv4(x) - x = self.max_pool(x) - - x = self.focal_conv5(x) - x = self.focal_conv6(x) - - return x diff --git a/models/layers.py b/models/layers.py index 62a3cc6..c69ae07 100644 --- a/models/layers.py +++ b/models/layers.py @@ -119,6 +119,33 @@ class FocalConv2d(BasicConv2d): return F.leaky_relu(z, inplace=True) +class FocalConv2dBlock(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_sizes: tuple[int, int], + paddings: tuple[int, int], + halving: int, + use_pool: bool = True, + **kwargs + ): + super().__init__() + self.use_pool = use_pool + self.fconv1 = FocalConv2d(in_channels, out_channels, kernel_sizes[0], + halving, padding=paddings[0], **kwargs) + self.fconv2 = FocalConv2d(out_channels, out_channels, kernel_sizes[1], + halving, padding=paddings[1], **kwargs) + self.max_pool = nn.MaxPool2d(2) + + def forward(self, x): + x = self.fconv1(x) + x = self.fconv2(x) + if self.use_pool: + x = self.max_pool(x) + return x + + class BasicConv1d(nn.Module): def __init__( self, diff --git a/models/tfa.py b/models/part_net.py index b80328a..2116600 100644 --- a/models/tfa.py +++ b/models/part_net.py @@ -3,18 +3,45 @@ import copy import torch import torch.nn as nn -from models.layers import BasicConv1d +from models.layers import BasicConv1d, FocalConv2dBlock + + +class FrameLevelPartFeatureExtractor(nn.Module): + + def __init__( + self, + in_channels: int = 3, + feature_channels: int = 32, + kernel_sizes: tuple[tuple, ...] = ((5, 3), (3, 3), (3, 3)), + paddings: tuple[tuple, ...] = ((2, 1), (1, 1), (1, 1)), + halving: tuple[int, ...] = (0, 2, 3) + ): + super().__init__() + num_blocks = len(kernel_sizes) + out_channels = [feature_channels * 2 ** i for i in range(num_blocks)] + in_channels = [in_channels] + out_channels[:-1] + use_pools = [True] * (num_blocks - 1) + [False] + params = (in_channels, out_channels, kernel_sizes, + paddings, halving, use_pools) + + self.fconv_blocks = [FocalConv2dBlock(*_params) + for _params in zip(*params)] + + def forward(self, x): + for fconv_block in self.fconv_blocks: + x = fconv_block(x) + return x class TemporalFeatureAggregator(nn.Module): def __init__( self, in_channels: int, - squeeze: int = 4, + squeeze_ratio: int = 4, num_part: int = 16 ): - super(TemporalFeatureAggregator, self).__init__() - hidden_dim = in_channels // squeeze + super().__init__() + hidden_dim = in_channels // squeeze_ratio self.num_part = num_part # MTB1 @@ -75,3 +102,41 @@ class TemporalFeatureAggregator(nn.Module): # Temporal Pooling ret = (feature3x1 + feature3x3).max(-1)[0] return ret + + +class PartNet(nn.Module): + def __init__( + self, + in_channels: int = 3, + feature_channels: int = 32, + kernel_sizes: tuple[tuple, ...] = ((5, 3), (3, 3), (3, 3)), + paddings: tuple[tuple, ...] = ((2, 1), (1, 1), (1, 1)), + halving: tuple[int, ...] = (0, 2, 3), + squeeze_ratio: int = 4, + num_part: int = 16 + ): + super().__init__() + self.num_part = num_part + self.fpfe = FrameLevelPartFeatureExtractor( + in_channels, feature_channels, kernel_sizes, paddings, halving + ) + + num_fconv_blocks = len(self.fpfe.fconv_blocks) + tfa_in_channels = feature_channels * 2 ** (num_fconv_blocks - 1) + self.tfa = TemporalFeatureAggregator( + tfa_in_channels, squeeze_ratio, self.num_part + ) + + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.max_pool = nn.AdaptiveMaxPool2d(1) + + def forward(self, x): + x = self.fpfe(x) + n, t, c, h, w = x.size() + split_size = h // self.num_part + x = x.split(split_size, dim=3) + x = [self.avg_pool(x_) + self.max_pool(x_) for x_ in x] + x = [x_.view(n, t, c, -1) for x_ in x] + x = torch.cat(x, dim=3) + x = self.tfa(x) + return x |