summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--config.py6
-rw-r--r--models/rgb_part_net.py2
-rw-r--r--utils/sampler.py35
3 files changed, 35 insertions, 8 deletions
diff --git a/config.py b/config.py
index 8abeba3..c928067 100644
--- a/config.py
+++ b/config.py
@@ -94,9 +94,9 @@ config: Configuration = {
'final_gamma': 0.01,
# Local parameters (override global ones)
- 'hpm': {
- 'final_gamma': 0.001
- }
+ # 'hpm': {
+ # 'final_gamma': 0.001
+ # }
}
},
# Model metadata
diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py
index 6e72e38..fba3485 100644
--- a/models/rgb_part_net.py
+++ b/models/rgb_part_net.py
@@ -59,7 +59,7 @@ class RGBPartNet(nn.Module):
if self.training:
return x_c, x_p, ae_losses, images
else:
- return torch.cat((x_c, x_p)).unsqueeze(1).view(-1)
+ return torch.cat((x_c.view(-1), x_p.view(-1)))
def _disentangle(self, x_c1_t2, x_c2_t2=None):
n, t, c, h, w = x_c1_t2.size()
diff --git a/utils/sampler.py b/utils/sampler.py
index 0977f94..581d7a2 100644
--- a/utils/sampler.py
+++ b/utils/sampler.py
@@ -15,7 +15,18 @@ class TripletSampler(data.Sampler):
):
super().__init__(data_source)
self.metadata_labels = data_source.metadata['labels']
+ metadata_conditions = data_source.metadata['conditions']
+ self.subsets = {}
+ for condition in metadata_conditions:
+ pre, _ = condition.split('-')
+ if self.subsets.get(pre, None) is None:
+ self.subsets[pre] = []
+ self.subsets[pre].append(condition)
+ self.num_subsets = len(self.subsets)
+ self.num_seq = {pre: len(seq) for (pre, seq) in self.subsets.items()}
+ self.min_num_seq = min(self.num_seq.values())
self.labels = data_source.labels
+ self.conditions = data_source.conditions
self.length = len(self.labels)
self.indexes = np.arange(0, self.length)
(self.pr, self.k) = batch_size
@@ -26,15 +37,31 @@ class TripletSampler(data.Sampler):
# Sample pr subjects by sampling labels appeared in dataset
sampled_subjects = random.sample(self.metadata_labels, k=self.pr)
for label in sampled_subjects:
- clips_from_subject = self.indexes[self.labels == label].tolist()
+ mask = self.labels == label
+ # Fix unbalanced datasets
+ if self.num_subsets > 1:
+ condition_mask = np.zeros(self.conditions.shape, dtype=bool)
+ for num, conditions_ in zip(
+ self.num_seq.values(), self.subsets.values()
+ ):
+ if num > self.min_num_seq:
+ conditions = random.sample(
+ conditions_, self.min_num_seq
+ )
+ else:
+ conditions = conditions_
+ for condition in conditions:
+ condition_mask |= self.conditions == condition
+ mask &= condition_mask
+ clips = self.indexes[mask].tolist()
# Sample k clips from the subject without replacement if
# have enough clips, k more clips will sampled for
# disentanglement
k = self.k * 2
- if len(clips_from_subject) >= k:
- _sampled_indexes = random.sample(clips_from_subject, k=k)
+ if len(clips) >= k:
+ _sampled_indexes = random.sample(clips, k=k)
else:
- _sampled_indexes = random.choices(clips_from_subject, k=k)
+ _sampled_indexes = random.choices(clips, k=k)
sampled_indexes += _sampled_indexes
yield sampled_indexes