summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--config.py6
-rw-r--r--models/model.py38
-rw-r--r--models/rgb_part_net.py2
3 files changed, 27 insertions, 19 deletions
diff --git a/config.py b/config.py
index d6de788..2378282 100644
--- a/config.py
+++ b/config.py
@@ -5,7 +5,7 @@ config: Configuration = {
# Disable accelerator
'disable_acc': False,
# GPU(s) used in training or testing if available
- 'CUDA_VISIBLE_DEVICES': '0',
+ 'CUDA_VISIBLE_DEVICES': '0,1',
# Directory used in training or testing for temporary storage
'save_dir': 'runs',
# Recorde disentangled image or not
@@ -30,14 +30,14 @@ config: Configuration = {
# Resolution after resize, can be divided 16
'frame_size': (64, 48),
# Cache dataset or not
- 'cache_on': False,
+ 'cache_on': True,
},
# Dataloader settings
'dataloader': {
# Batch size (pr, k)
# `pr` denotes number of persons
# `k` denotes number of sequences per person
- 'batch_size': (4, 6),
+ 'batch_size': (6, 8),
# Number of workers of Dataloader
'num_workers': 4,
# Faster data transfer from RAM to GPU if enabled
diff --git a/models/model.py b/models/model.py
index acccbff..1f8ae23 100644
--- a/models/model.py
+++ b/models/model.py
@@ -163,7 +163,7 @@ class Model:
)
else: # Different margins
self.triplet_loss = JointBatchTripletLoss(
- self.rgb_pn.hpm_num_parts,
+ self.rgb_pn.module.hpm_num_parts,
triplet_is_hard, triplet_is_mean, triplet_margins
)
else: # Soft margins
@@ -175,13 +175,15 @@ class Model:
num_pos_pairs = (self.k*(self.k-1)//2) * self.pr
# Try to accelerate computation using CUDA or others
+ self.rgb_pn = nn.DataParallel(self.rgb_pn)
self.rgb_pn = self.rgb_pn.to(self.device)
+ self.triplet_loss = nn.DataParallel(self.triplet_loss)
self.triplet_loss = self.triplet_loss.to(self.device)
self.optimizer = optim.Adam([
- {'params': self.rgb_pn.ae.parameters(), **ae_optim_hp},
- {'params': self.rgb_pn.pn.parameters(), **pn_optim_hp},
- {'params': self.rgb_pn.hpm.parameters(), **hpm_optim_hp},
- {'params': self.rgb_pn.fc_mat, **fc_optim_hp}
+ {'params': self.rgb_pn.module.ae.parameters(), **ae_optim_hp},
+ {'params': self.rgb_pn.module.pn.parameters(), **pn_optim_hp},
+ {'params': self.rgb_pn.module.hpm.parameters(), **hpm_optim_hp},
+ {'params': self.rgb_pn.module.fc_mat, **fc_optim_hp}
], **optim_hp)
sched_final_gamma = sched_hp.get('final_gamma', 0.001)
sched_start_step = sched_hp.get('start_step', 15_000)
@@ -227,13 +229,14 @@ class Model:
embedding, ae_losses, images = self.rgb_pn(x_c1, x_c2)
y = batch_c1['label'].to(self.device)
# Duplicate labels for each part
- y = y.repeat(self.rgb_pn.num_total_parts, 1)
+ y = y.repeat(self.rgb_pn.module.num_total_parts, 1)
+ embedding = embedding.transpose(0, 1)
trip_loss, dist, num_non_zero = self.triplet_loss(embedding, y)
losses = torch.cat((
- ae_losses,
+ ae_losses.view(-1, 3).mean(0),
torch.stack((
- trip_loss[:self.rgb_pn.hpm_num_parts].mean(),
- trip_loss[self.rgb_pn.hpm_num_parts:].mean()
+ trip_loss[:self.rgb_pn.module.hpm_num_parts].mean(),
+ trip_loss[self.rgb_pn.module.hpm_num_parts:].mean()
))
))
loss = losses.sum()
@@ -255,28 +258,32 @@ class Model:
# None-zero losses in batch
if num_non_zero is not None:
self.writer.add_scalars('Loss/non-zero counts', {
- 'HPM': num_non_zero[:self.rgb_pn.hpm_num_parts].mean(),
- 'PartNet': num_non_zero[self.rgb_pn.hpm_num_parts:].mean()
+ 'HPM': num_non_zero[
+ :self.rgb_pn.module.hpm_num_parts].mean(),
+ 'PartNet': num_non_zero[
+ self.rgb_pn.module.hpm_num_parts:].mean()
}, self.curr_iter)
# Embedding distance
- mean_hpm_dist = dist[:self.rgb_pn.hpm_num_parts].mean(0)
+ mean_hpm_dist = dist[:self.rgb_pn.module.hpm_num_parts].mean(0)
self._add_ranked_scalars(
'Embedding/HPM distance', mean_hpm_dist,
num_pos_pairs, num_pairs, self.curr_iter
)
- mean_pa_dist = dist[self.rgb_pn.hpm_num_parts:].mean(0)
+ mean_pa_dist = dist[self.rgb_pn.module.hpm_num_parts:].mean(0)
self._add_ranked_scalars(
'Embedding/ParNet distance', mean_pa_dist,
num_pos_pairs, num_pairs, self.curr_iter
)
# Embedding norm
- mean_hpm_embedding = embedding[:self.rgb_pn.hpm_num_parts].mean(0)
+ mean_hpm_embedding = embedding[
+ :self.rgb_pn.module.hpm_num_parts].mean(0)
mean_hpm_norm = mean_hpm_embedding.norm(dim=-1)
self._add_ranked_scalars(
'Embedding/HPM norm', mean_hpm_norm,
self.k, self.pr * self.k, self.curr_iter
)
- mean_pa_embedding = embedding[self.rgb_pn.hpm_num_parts:].mean(0)
+ mean_pa_embedding = embedding[
+ self.rgb_pn.module.hpm_num_parts:].mean(0)
mean_pa_norm = mean_pa_embedding.norm(dim=-1)
self._add_ranked_scalars(
'Embedding/PartNet norm', mean_pa_norm,
@@ -393,6 +400,7 @@ class Model:
model_hp.pop('triplet_margins', None)
self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp)
# Try to accelerate computation using CUDA or others
+ self.rgb_pn = nn.DataParallel(self.rgb_pn)
self.rgb_pn = self.rgb_pn.to(self.device)
self.rgb_pn.eval()
diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py
index 8a0f3a7..cdf579b 100644
--- a/models/rgb_part_net.py
+++ b/models/rgb_part_net.py
@@ -67,7 +67,7 @@ class RGBPartNet(nn.Module):
x = self.fc(x)
if self.training:
- return x, ae_losses, images
+ return x.transpose(0, 1), ae_losses, images
else:
return x.unsqueeze(1).view(-1)