summaryrefslogtreecommitdiff
path: root/models/hpm.py
diff options
context:
space:
mode:
Diffstat (limited to 'models/hpm.py')
-rw-r--r--models/hpm.py22
1 files changed, 5 insertions, 17 deletions
diff --git a/models/hpm.py b/models/hpm.py
index 5553094..66503e3 100644
--- a/models/hpm.py
+++ b/models/hpm.py
@@ -1,6 +1,5 @@
import torch
import torch.nn as nn
-from torchvision.models import resnet50
from models.layers import HorizontalPyramidPooling
@@ -8,12 +7,11 @@ from models.layers import HorizontalPyramidPooling
class HorizontalPyramidMatching(nn.Module):
def __init__(
self,
- in_channels: int = 3,
+ in_channels: int,
out_channels: int = 128,
- scales: tuple[int, ...] = (1, 2, 4, 8),
+ scales: tuple[int, ...] = (1, 2, 4),
use_avg_pool: bool = True,
use_max_pool: bool = True,
- use_backbone: bool = False,
**kwargs
):
super().__init__()
@@ -22,11 +20,6 @@ class HorizontalPyramidMatching(nn.Module):
self.scales = scales
self.use_avg_pool = use_avg_pool
self.use_max_pool = use_max_pool
- self.use_backbone = use_backbone
-
- if self.use_backbone:
- self.backbone = resnet50(pretrained=True)
- self.in_channels = self.backbone.layer4[-1].conv1.in_channels
self.pyramids = nn.ModuleList([
self._make_pyramid(scale, **kwargs) for scale in self.scales
@@ -44,15 +37,10 @@ class HorizontalPyramidMatching(nn.Module):
return pyramid
def forward(self, x):
- # Flatten frames in all batches
+ # Flatten canonical features in all batches
t, n, c, h, w = x.size()
- x = x.view(-1, c, h, w)
-
- if self.use_backbone:
- # FIXME Inconsistent dimensions
- x = self.backbone(x)
+ x = x.view(t * n, c, h, w)
- t_n, _, h, _ = x.size()
feature = []
for pyramid_index, pyramid in enumerate(self.pyramids):
h_per_hpp = h // self.scales[pyramid_index]
@@ -61,7 +49,7 @@ class HorizontalPyramidMatching(nn.Module):
(hpp_index + 1) * h_per_hpp)
x_slice = x[:, :, h_filter, :]
x_slice = hpp(x_slice)
- x_slice = x_slice.view(t_n, -1)
+ x_slice = x_slice.view(t * n, -1)
feature.append(x_slice)
x = torch.stack(feature)