summaryrefslogtreecommitdiff
path: root/models/hpm.py
diff options
context:
space:
mode:
Diffstat (limited to 'models/hpm.py')
-rw-r--r--models/hpm.py29
1 files changed, 18 insertions, 11 deletions
diff --git a/models/hpm.py b/models/hpm.py
index 4a1f1a4..5553094 100644
--- a/models/hpm.py
+++ b/models/hpm.py
@@ -8,20 +8,25 @@ from models.layers import HorizontalPyramidPooling
class HorizontalPyramidMatching(nn.Module):
def __init__(
self,
+ in_channels: int = 3,
+ out_channels: int = 128,
scales: tuple[int, ...] = (1, 2, 4, 8),
- out_channels: int = 256,
use_avg_pool: bool = True,
use_max_pool: bool = True,
+ use_backbone: bool = False,
**kwargs
):
super().__init__()
- self.scales = scales
+ self.in_channels = in_channels
self.out_channels = out_channels
+ self.scales = scales
self.use_avg_pool = use_avg_pool
self.use_max_pool = use_max_pool
+ self.use_backbone = use_backbone
- self.backbone = resnet50(pretrained=True)
- self.in_channels = self.backbone.layer4[-1].conv1.in_channels
+ if self.use_backbone:
+ self.backbone = resnet50(pretrained=True)
+ self.in_channels = self.backbone.layer4[-1].conv1.in_channels
self.pyramids = nn.ModuleList([
self._make_pyramid(scale, **kwargs) for scale in self.scales
@@ -40,12 +45,14 @@ class HorizontalPyramidMatching(nn.Module):
def forward(self, x):
# Flatten frames in all batches
- n, t, c, h, w = x.size()
+ t, n, c, h, w = x.size()
x = x.view(-1, c, h, w)
- x = self.backbone(x)
- n, c, h, w = x.size()
+ if self.use_backbone:
+ # FIXME Inconsistent dimensions
+ x = self.backbone(x)
+ t_n, _, h, _ = x.size()
feature = []
for pyramid_index, pyramid in enumerate(self.pyramids):
h_per_hpp = h // self.scales[pyramid_index]
@@ -54,11 +61,11 @@ class HorizontalPyramidMatching(nn.Module):
(hpp_index + 1) * h_per_hpp)
x_slice = x[:, :, h_filter, :]
x_slice = hpp(x_slice)
- x_slice = x_slice.view(n, -1)
+ x_slice = x_slice.view(t_n, -1)
feature.append(x_slice)
- x = torch.cat(feature, dim=1)
+ x = torch.stack(feature)
# Unfold frames to original batch
- _, d = x.size()
- x = x.view(n, t, d)
+ p, _, c = x.size()
+ x = x.view(p, t, n, c)
return x