summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py51
1 files changed, 35 insertions, 16 deletions
diff --git a/models/model.py b/models/model.py
index 4015524..07ef37e 100644
--- a/models/model.py
+++ b/models/model.py
@@ -177,18 +177,21 @@ class Model:
triplet_is_hard, triplet_is_mean, None
)
+ num_sampled_frames = dataset_config.get('num_sampled_frames', 30)
num_pairs = (self.pr*self.k-1) * (self.pr*self.k) // 2
num_pos_pairs = (self.k*(self.k-1)//2) * self.pr
# Try to accelerate computation using CUDA or others
+ self.rgb_pn = nn.DataParallel(self.rgb_pn)
self.rgb_pn = self.rgb_pn.to(self.device)
+ self.triplet_loss_hpm = nn.DataParallel(self.triplet_loss_hpm)
self.triplet_loss_hpm = self.triplet_loss_hpm.to(self.device)
+ self.triplet_loss_pn = nn.DataParallel(self.triplet_loss_pn)
self.triplet_loss_pn = self.triplet_loss_pn.to(self.device)
-
self.optimizer = optim.Adam([
- {'params': self.rgb_pn.ae.parameters(), **ae_optim_hp},
- {'params': self.rgb_pn.hpm.parameters(), **hpm_optim_hp},
- {'params': self.rgb_pn.pn.parameters(), **pn_optim_hp},
+ {'params': self.rgb_pn.module.ae.parameters(), **ae_optim_hp},
+ {'params': self.rgb_pn.module.hpm.parameters(), **hpm_optim_hp},
+ {'params': self.rgb_pn.module.pn.parameters(), **pn_optim_hp},
], **optim_hp)
start_step = sched_hp.get('start_step', 15_000)
@@ -241,20 +244,34 @@ class Model:
# forward + backward + optimize
x_c1 = batch_c1['clip'].to(self.device)
x_c2 = batch_c2['clip'].to(self.device)
- embed_c, embed_p, ae_losses, images = self.rgb_pn(x_c1, x_c2)
+ embed_c, embed_p, images, feature_for_loss = self.rgb_pn(x_c1, x_c2)
+ x_c1_pred = feature_for_loss[0]
+ xrecon_loss = torch.stack([
+ F.mse_loss(x_c1_pred[:, i, :, :, :], x_c1[:, i, :, :, :])
+ for i in range(num_sampled_frames)
+ ]).sum()
+ f_c_c1_t1, f_c_c1_t2, f_c_c2_t2 = feature_for_loss[1]
+ cano_cons_loss = torch.stack([
+ F.mse_loss(f_c_c1_t1[:, i, :], f_c_c1_t2[:, i, :])
+ + F.mse_loss(f_c_c1_t2[:, i, :], f_c_c2_t2[:, i, :])
+ for i in range(num_sampled_frames)
+ ]).mean()
+ f_p_c1_t2, f_p_c2_t2 = feature_for_loss[2]
+ pose_sim_loss = F.mse_loss(
+ f_p_c1_t2.mean(1), f_p_c2_t2.mean(1)
+ ) * 10
y = batch_c1['label'].to(self.device)
# Duplicate labels for each part
- y = y.repeat(self.rgb_pn.num_parts, 1)
+ y = y.repeat(self.rgb_pn.module.num_parts, 1)
trip_loss_hpm, hpm_dist, hpm_num_non_zero = self.triplet_loss_hpm(
- embed_c, y[:self.rgb_pn.hpm.num_parts]
+ embed_c.transpose(0, 1), y[:self.rgb_pn.module.hpm.num_parts]
)
trip_loss_pn, pn_dist, pn_num_non_zero = self.triplet_loss_pn(
- embed_p, y[self.rgb_pn.hpm.num_parts:]
+ embed_p.transpose(0, 1), y[self.rgb_pn.module.hpm.num_parts:]
)
losses = torch.stack((
- *ae_losses,
- trip_loss_hpm.mean(),
- trip_loss_pn.mean()
+ xrecon_loss, cano_cons_loss, pose_sim_loss,
+ trip_loss_hpm.mean(), trip_loss_pn.mean()
))
loss = losses.sum()
loss.backward()
@@ -264,10 +281,11 @@ class Model:
running_loss += losses.detach()
# Write losses to TensorBoard
self.writer.add_scalar('Loss/all', loss, self.curr_iter)
- self.writer.add_scalars('Loss/disentanglement', dict(zip((
- 'Cross reconstruction loss', 'Canonical consistency loss',
- 'Pose similarity loss'
- ), ae_losses)), self.curr_iter)
+ self.writer.add_scalars('Loss/disentanglement', {
+ 'Cross reconstruction loss': xrecon_loss,
+ 'Canonical consistency loss': cano_cons_loss,
+ 'Pose similarity loss': pose_sim_loss
+ }, self.curr_iter)
self.writer.add_scalars('Loss/triplet loss', {
'HPM': losses[3],
'PartNet': losses[4]
@@ -405,12 +423,13 @@ class Model:
)
# Init models
- model_hp: dict = self.hp.get('model', {}).copy()
+ model_hp: Dict = self.hp.get('model', {}).copy()
model_hp.pop('triplet_is_hard', True)
model_hp.pop('triplet_is_mean', True)
model_hp.pop('triplet_margins', None)
self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp)
# Try to accelerate computation using CUDA or others
+ self.rgb_pn = nn.DataParallel(self.rgb_pn)
self.rgb_pn = self.rgb_pn.to(self.device)
self.rgb_pn.eval()