summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py60
1 files changed, 30 insertions, 30 deletions
diff --git a/models/model.py b/models/model.py
index eb12285..7bc1da9 100644
--- a/models/model.py
+++ b/models/model.py
@@ -1,6 +1,6 @@
import os
from datetime import datetime
-from typing import Union, Optional
+from typing import Union, Optional, Tuple, List, Dict, Set
import numpy as np
import torch
@@ -58,8 +58,8 @@ class Model:
self.pr: Optional[int] = None
self.k: Optional[int] = None
- self._gallery_dataset_meta: Optional[dict[str, list]] = None
- self._probe_datasets_meta: Optional[dict[str, dict[str, list]]] = None
+ self._gallery_dataset_meta: Optional[Dict[str, List]] = None
+ self._probe_datasets_meta: Optional[Dict[str, Dict[str, List]]] = None
self._model_name: str = self.meta.get('name', 'RGB-GaitPart')
self._hp_sig: str = self._make_signature(self.hp)
@@ -107,8 +107,8 @@ class Model:
def fit_all(
self,
dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
+ dataset_selectors: Dict[
+ str, Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
],
dataloader_config: DataloaderConfiguration,
):
@@ -140,7 +140,7 @@ class Model:
dataloader = self._parse_dataloader_config(dataset, dataloader_config)
# Prepare for model, optimizer and scheduler
model_hp = self.hp.get('model', {})
- optim_hp: dict = self.hp.get('optimizer', {}).copy()
+ optim_hp: Dict = self.hp.get('optimizer', {}).copy()
start_iter = optim_hp.pop('start_iter', 0)
ae_optim_hp = optim_hp.pop('auto_encoder', {})
pn_optim_hp = optim_hp.pop('part_net', {})
@@ -269,13 +269,13 @@ class Model:
def predict_all(
self,
- iters: tuple[int],
+ iters: Tuple[int],
dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
+ dataset_selectors: Dict[
+ str, Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
],
dataloader_config: DataloaderConfiguration,
- ) -> dict[str, torch.Tensor]:
+ ) -> Dict[str, torch.Tensor]:
self.is_train = False
# Split gallery and probe dataset
gallery_dataloader, probe_dataloaders = self._split_gallery_probe(
@@ -315,7 +315,7 @@ class Model:
return self._evaluate(gallery_samples, probe_samples)
- def _get_eval_sample(self, sample: dict[str, Union[list, torch.Tensor]]):
+ def _get_eval_sample(self, sample: Dict[str, Union[List, torch.Tensor]]):
label = sample.pop('label').item()
clip = sample.pop('clip').to(self.device)
feature = self.rgb_pn(clip).detach()
@@ -327,10 +327,10 @@ class Model:
def _evaluate(
self,
- gallery_samples: dict[str, Union[list[str], torch.Tensor]],
- probe_samples: dict[str, dict[str, Union[list[str], torch.Tensor]]],
+ gallery_samples: Dict[str, Union[List[str], torch.Tensor]],
+ probe_samples: Dict[str, Dict[str, Union[List[str], torch.Tensor]]],
num_ranks: int = 5
- ) -> dict[str, torch.Tensor]:
+ ) -> Dict[str, torch.Tensor]:
probe_conditions = self._probe_datasets_meta.keys()
gallery_views_meta = self._gallery_dataset_meta['views']
probe_views_meta = list(self._probe_datasets_meta.values())[0]['views']
@@ -375,12 +375,12 @@ class Model:
def _load_pretrained(
self,
- iters: tuple[int],
+ iters: Tuple[int],
dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
+ dataset_selectors: Dict[
+ str, Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
]
- ) -> dict[str, str]:
+ ) -> Dict[str, str]:
checkpoints = {}
for (iter_, (condition, selector)) in zip(
iters, dataset_selectors.items()
@@ -397,7 +397,7 @@ class Model:
self,
dataset_config: DatasetConfiguration,
dataloader_config: DataloaderConfiguration,
- ) -> tuple[DataLoader, dict[str, DataLoader]]:
+ ) -> Tuple[DataLoader, Dict[str, DataLoader]]:
dataset_name = dataset_config.get('name', 'CASIA-B')
if dataset_name == 'CASIA-B':
gallery_dataset = self._parse_dataset_config(
@@ -453,7 +453,7 @@ class Model:
dataset_config,
popped_keys=['root_dir', 'cache_on']
)
- config: dict = dataset_config.copy()
+ config: Dict = dataset_config.copy()
name = config.pop('name', 'CASIA-B')
if name == 'CASIA-B':
return CASIAB(**config, is_train=self.is_train)
@@ -467,7 +467,7 @@ class Model:
dataset: Union[CASIAB],
dataloader_config: DataloaderConfiguration
) -> DataLoader:
- config: dict = dataloader_config.copy()
+ config: Dict = dataloader_config.copy()
(self.pr, self.k) = config.pop('batch_size', (8, 16))
if self.is_train:
triplet_sampler = TripletSampler(dataset, (self.pr, self.k))
@@ -480,9 +480,9 @@ class Model:
def _batch_splitter(
self,
- batch: list[dict[str, Union[np.int64, str, torch.Tensor]]]
- ) -> tuple[dict[str, Union[list[str], torch.Tensor]],
- dict[str, Union[list[str], torch.Tensor]]]:
+ batch: List[Dict[str, Union[np.int64, str, torch.Tensor]]]
+ ) -> Tuple[Dict[str, Union[List[str], torch.Tensor]],
+ Dict[str, Union[List[str], torch.Tensor]]]:
"""
Disentanglement need two random conditions, this function will
split pr * k * 2 samples to 2 dicts each containing pr * k
@@ -496,8 +496,8 @@ class Model:
return default_collate(_batch[0]), default_collate(_batch[1])
def _make_signature(self,
- config: dict,
- popped_keys: Optional[list] = None) -> str:
+ config: Dict,
+ popped_keys: Optional[List] = None) -> str:
_config = config.copy()
if popped_keys:
for key in popped_keys:
@@ -505,16 +505,16 @@ class Model:
return self._gen_sig(list(_config.values()))
- def _gen_sig(self, values: Union[tuple, list, set, str, int, float]) -> str:
+ def _gen_sig(self, values: Union[Tuple, List, Set, str, int, float]) -> str:
strings = []
for v in values:
if isinstance(v, str):
strings.append(v)
- elif isinstance(v, (tuple, list)):
+ elif isinstance(v, (Tuple, List)):
strings.append(self._gen_sig(v))
- elif isinstance(v, set):
+ elif isinstance(v, Set):
strings.append(self._gen_sig(sorted(list(v))))
- elif isinstance(v, dict):
+ elif isinstance(v, Dict):
strings.append(self._gen_sig(list(v.values())))
else:
strings.append(str(v))