summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py34
1 files changed, 28 insertions, 6 deletions
diff --git a/models/model.py b/models/model.py
index ddb715d..0418070 100644
--- a/models/model.py
+++ b/models/model.py
@@ -69,6 +69,7 @@ class Model:
self.optimizer: Optional[optim.Adam] = None
self.scheduler: Optional[optim.lr_scheduler.StepLR] = None
self.writer: Optional[SummaryWriter] = None
+ self.image_log_on = system_config.get('image_log_on', False)
self.CASIAB_GALLERY_SELECTOR = {
'selector': {'conditions': ClipConditions({r'nm-0[1-4]'})}
@@ -146,7 +147,8 @@ class Model:
hpm_optim_hp = optim_hp.pop('hpm', {})
fc_optim_hp = optim_hp.pop('fc', {})
sched_hp = self.hp.get('scheduler', {})
- self.rgb_pn = RGBPartNet(self.in_channels, **model_hp)
+ self.rgb_pn = RGBPartNet(self.in_channels, **model_hp,
+ image_log_on=self.image_log_on)
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
self.optimizer = optim.Adam([
@@ -168,9 +170,9 @@ class Model:
# Training start
start_time = datetime.now()
- running_loss = torch.zeros(4).to(self.device)
+ running_loss = torch.zeros(5, device=self.device)
print(f"{'Iter':^5} {'Loss':^6} {'Xrecon':^8} {'PoseSim':^8}",
- f"{'CanoCons':^8} {'BATrip':^8} LR(s)")
+ f"{'CanoCons':^8} {'BATripH':^8} {'BATripP':^8} LR(s)")
for (batch_c1, batch_c2) in dataloader:
if self.curr_iter == start_iter:
self.optimizer.add_param_group(
@@ -189,7 +191,7 @@ class Model:
x_c1 = batch_c1['clip'].to(self.device)
x_c2 = batch_c2['clip'].to(self.device)
y = batch_c1['label'].to(self.device)
- losses = self.rgb_pn(x_c1, x_c2, y)
+ losses, images = self.rgb_pn(x_c1, x_c2, y)
loss = losses.sum()
loss.backward()
self.optimizer.step()
@@ -200,13 +202,33 @@ class Model:
self.writer.add_scalar('Loss/all', loss, self.curr_iter)
self.writer.add_scalars('Loss/details', dict(zip([
'Cross reconstruction loss', 'Pose similarity loss',
- 'Canonical consistency loss', 'Batch All triplet loss'
+ 'Canonical consistency loss', 'Batch All triplet loss (HPM)',
+ 'Batch All triplet loss (PartNet)'
], losses)), self.curr_iter)
+ if self.image_log_on:
+ (appearance_image, canonical_image, pose_image) = images
+ self.writer.add_images(
+ 'Canonical image', canonical_image, self.curr_iter
+ )
+ for i in range(self.pr * self.k):
+ self.writer.add_images(
+ f'Original image/batch {i}', x_c1[i], self.curr_iter
+ )
+ self.writer.add_images(
+ f'Appearance image/batch {i}',
+ appearance_image[:, i, :, :, :],
+ self.curr_iter
+ )
+ self.writer.add_images(
+ f'Pose image/batch {i}',
+ pose_image[:, i, :, :, :],
+ self.curr_iter
+ )
if self.curr_iter % 100 == 0:
lrs = self.scheduler.get_last_lr()
print(f'{self.curr_iter:5d} {running_loss.sum() / 100:6.3f}',
- '{:f} {:f} {:f} {:f}'.format(*running_loss / 100),
+ '{:f} {:f} {:f} {:f} {:f}'.format(*running_loss / 100),
' '.join(('{:.3e}'.format(lr) for lr in lrs)))
running_loss.zero_()