summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py282
1 files changed, 33 insertions, 249 deletions
diff --git a/models/model.py b/models/model.py
index ceadb92..25c8a4f 100644
--- a/models/model.py
+++ b/models/model.py
@@ -6,22 +6,18 @@ from typing import Union, Optional
import numpy as np
import torch
import torch.nn as nn
-import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
-from models.hpm import HorizontalPyramidMatching
-from models.part_net import PartNet
from models.rgb_part_net import RGBPartNet
from utils.configuration import DataloaderConfiguration, \
HyperparameterConfiguration, DatasetConfiguration, ModelConfiguration, \
SystemConfiguration
from utils.dataset import CASIAB, ClipConditions, ClipViews, ClipClasses
from utils.sampler import TripletSampler
-from utils.triplet_loss import BatchTripletLoss
class Model:
@@ -62,8 +58,6 @@ class Model:
self.in_size: tuple[int, int] = (64, 48)
self.pr: Optional[int] = None
self.k: Optional[int] = None
- self.num_pairs: Optional[int] = None
- self.num_pos_pairs: Optional[int] = None
self._gallery_dataset_meta: Optional[dict[str, list]] = None
self._probe_datasets_meta: Optional[dict[str, dict[str, list]]] = None
@@ -73,8 +67,6 @@ class Model:
self._dataset_sig: str = 'undefined'
self.rgb_pn: Optional[RGBPartNet] = None
- self.triplet_loss_hpm: Optional[BatchTripletLoss] = None
- self.triplet_loss_pn: Optional[BatchTripletLoss] = None
self.optimizer: Optional[optim.Adam] = None
self.scheduler: Optional[optim.lr_scheduler.StepLR] = None
self.writer: Optional[SummaryWriter] = None
@@ -166,71 +158,23 @@ class Model:
))
# Prepare for model, optimizer and scheduler
model_hp: dict = self.hp.get('model', {}).copy()
- triplet_is_hard = model_hp.pop('triplet_is_hard', True)
- triplet_is_mean = model_hp.pop('triplet_is_mean', True)
- triplet_margins = model_hp.pop('triplet_margins', None)
optim_hp: dict = self.hp.get('optimizer', {}).copy()
- ae_optim_hp = optim_hp.pop('auto_encoder', {})
- hpm_optim_hp = optim_hp.pop('hpm', {})
- pn_optim_hp = optim_hp.pop('part_net', {})
sched_hp = self.hp.get('scheduler', {})
- ae_sched_hp = sched_hp.get('auto_encoder', {})
- hpm_sched_hp = sched_hp.get('hpm', {})
- pn_sched_hp = sched_hp.get('part_net', {})
self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp,
image_log_on=self.image_log_on)
- # Hard margins
- if triplet_margins:
- self.triplet_loss_hpm = BatchTripletLoss(
- triplet_is_hard, triplet_is_mean, triplet_margins[0]
- )
- self.triplet_loss_pn = BatchTripletLoss(
- triplet_is_hard, triplet_is_mean, triplet_margins[1]
- )
- else: # Soft margins
- self.triplet_loss_hpm = BatchTripletLoss(
- triplet_is_hard, triplet_is_mean, None
- )
- self.triplet_loss_pn = BatchTripletLoss(
- triplet_is_hard, triplet_is_mean, None
- )
-
- self.num_pairs = (self.pr*self.k-1) * (self.pr*self.k) // 2
- self.num_pos_pairs = (self.k*(self.k-1)//2) * self.pr
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
- self.triplet_loss_hpm = self.triplet_loss_hpm.to(self.device)
- self.triplet_loss_pn = self.triplet_loss_pn.to(self.device)
-
- self.optimizer = optim.Adam([
- {'params': self.rgb_pn.ae.parameters(), **ae_optim_hp},
- {'params': self.rgb_pn.hpm.parameters(), **hpm_optim_hp},
- {'params': self.rgb_pn.pn.parameters(), **pn_optim_hp},
- ], **optim_hp)
-
- # Scheduler
+ self.optimizer = optim.Adam(self.rgb_pn.parameters(), **optim_hp)
start_step = sched_hp.get('start_step', 15_000)
final_gamma = sched_hp.get('final_gamma', 0.001)
- ae_start_step = ae_sched_hp.get('start_step', start_step)
- ae_final_gamma = ae_sched_hp.get('final_gamma', final_gamma)
- ae_all_step = self.total_iter - ae_start_step
- hpm_start_step = hpm_sched_hp.get('start_step', start_step)
- hpm_final_gamma = hpm_sched_hp.get('final_gamma', final_gamma)
- hpm_all_step = self.total_iter - hpm_start_step
- pn_start_step = pn_sched_hp.get('start_step', start_step)
- pn_final_gamma = pn_sched_hp.get('final_gamma', final_gamma)
- pn_all_step = self.total_iter - pn_start_step
- self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=[
- lambda t: ae_final_gamma ** ((t - ae_start_step) / ae_all_step)
- if t > ae_start_step else 1,
- lambda t: hpm_final_gamma ** ((t - hpm_start_step) / hpm_all_step)
- if t > hpm_start_step else 1,
- lambda t: pn_final_gamma ** ((t - pn_start_step) / pn_all_step)
- if t > pn_start_step else 1,
- ])
-
+ all_step = self.total_iter - start_step
+ self.scheduler = optim.lr_scheduler.LambdaLR(
+ self.optimizer,
+ lambda t: final_gamma ** ((t - start_step) / all_step)
+ if t > start_step else 1,
+ )
self.writer = SummaryWriter(self._log_name)
# Set seeds for reproducibility
@@ -259,24 +203,18 @@ class Model:
# forward + backward + optimize
x_c1 = batch_c1['clip'].to(self.device)
x_c2 = batch_c2['clip'].to(self.device)
- embed_c, embed_p, ae_losses, images = self.rgb_pn(x_c1, x_c2)
- y = batch_c1['label'].to(self.device)
- losses, hpm_result, pn_result = self._classification_loss(
- embed_c, embed_p, ae_losses, y
- )
+ losses, features, images = self.rgb_pn(x_c1, x_c2)
loss = losses.sum()
loss.backward()
self.optimizer.step()
self.scheduler.step()
# Learning rate
- self.writer.add_scalars('Learning rate', dict(zip((
- 'Auto-encoder', 'HPM', 'PartNet'
- ), self.scheduler.get_last_lr())), self.curr_iter)
- # Other stats
- self._write_stat(
- 'Train', embed_c, embed_p, hpm_result, pn_result, loss, losses
+ self.writer.add_scalar(
+ 'Learning rate', self.scheduler.get_last_lr()[0], self.curr_iter
)
+ # Other stats
+ self._write_stat('Train', loss, losses)
if self.curr_iter % 100 == 99:
# Write disentangled images
@@ -295,32 +233,33 @@ class Model:
self.writer.add_images(
f'Pose image/batch {i}', p, self.curr_iter
)
-
- # Validation
- embed_c = self._flatten_embedding(embed_c)
- embed_p = self._flatten_embedding(embed_p)
- self._write_embedding('HPM Train', embed_c, x_c1, y)
- self._write_embedding('PartNet Train', embed_p, x_c1, y)
+ f_a, f_c, f_p = features
+ for i, (f_a_i, f_c_i, f_p_i) in enumerate(
+ zip(f_a, f_c, f_p)
+ ):
+ self.writer.add_images(
+ f'Appearance features/Layer {i}',
+ f_a_i[:, :3, :, :], self.curr_iter
+ )
+ self.writer.add_images(
+ f'Canonical features/Layer {i}',
+ f_c_i[:, :3, :, :], self.curr_iter
+ )
+ for j, p in enumerate(f_p_i):
+ self.writer.add_images(
+ f'Pose features/Layer {i}/batch{j}',
+ p[:, :3, :, :], self.curr_iter
+ )
# Calculate losses on testing batch
batch_c1, batch_c2 = next(val_dataloader)
x_c1 = batch_c1['clip'].to(self.device)
x_c2 = batch_c2['clip'].to(self.device)
with torch.no_grad():
- embed_c, embed_p, ae_losses, _ = self.rgb_pn(x_c1, x_c2)
- y = batch_c1['label'].to(self.device)
- losses, hpm_result, pn_result = self._classification_loss(
- embed_c, embed_p, ae_losses, y
- )
+ losses, _, _ = self.rgb_pn(x_c1, x_c2)
loss = losses.sum()
- self._write_stat(
- 'Val', embed_c, embed_p, hpm_result, pn_result, loss, losses
- )
- embed_c = self._flatten_embedding(embed_c)
- embed_p = self._flatten_embedding(embed_p)
- self._write_embedding('HPM Val', embed_c, x_c1, y)
- self._write_embedding('PartNet Val', embed_p, x_c1, y)
+ self._write_stat('Val', loss, losses)
# Checkpoint
if self.curr_iter % 1000 == 999:
@@ -333,117 +272,15 @@ class Model:
self.writer.close()
- def _classification_loss(self, embed_c, embed_p, ae_losses, y):
- # Duplicate labels for each part
- y_triplet = y.repeat(self.rgb_pn.num_parts, 1)
- hpm_result = self.triplet_loss_hpm(
- embed_c, y_triplet[:self.rgb_pn.hpm.num_parts]
- )
- pn_result = self.triplet_loss_pn(
- embed_p, y_triplet[self.rgb_pn.hpm.num_parts:]
- )
- losses = torch.stack((
- *ae_losses,
- hpm_result.pop('loss').mean(),
- pn_result.pop('loss').mean()
- ))
- return losses, hpm_result, pn_result
-
- def _write_embedding(self, tag, embed, x, y):
- frame = x[:, 0, :, :, :].cpu()
- n, c, h, w = frame.size()
- padding = torch.zeros(n, c, h, (h-w) // 2)
- padded_frame = torch.cat((padding, frame, padding), dim=-1)
- self.writer.add_embedding(
- embed,
- metadata=y.cpu().tolist(),
- label_img=padded_frame,
- global_step=self.curr_iter,
- tag=tag
- )
-
- def _flatten_embedding(self, embed):
- return embed.detach().transpose(0, 1).reshape(self.k * self.pr, -1)
-
def _write_stat(
- self, postfix, embed_c, embed_p, hpm_result, pn_result, loss, losses
+ self, postfix, loss, losses
):
# Write losses to TensorBoard
self.writer.add_scalar(f'Loss/all {postfix}', loss, self.curr_iter)
self.writer.add_scalars(f'Loss/disentanglement {postfix}', dict(zip((
'Cross reconstruction loss', 'Canonical consistency loss',
'Pose similarity loss'
- ), losses[:3])), self.curr_iter)
- self.writer.add_scalars(f'Loss/triplet loss {postfix}', {
- 'HPM': losses[3],
- 'PartNet': losses[4]
- }, self.curr_iter)
- # None-zero losses in batch
- if hpm_result['counts'] is not None and pn_result['counts'] is not None:
- self.writer.add_scalars(f'Loss/non-zero counts {postfix}', {
- 'HPM': hpm_result['counts'].mean(),
- 'PartNet': pn_result['counts'].mean()
- }, self.curr_iter)
- # Embedding distance
- mean_hpm_dist = hpm_result['dist'].mean(0)
- self._add_ranked_scalars(
- f'Embedding/HPM distance {postfix}', mean_hpm_dist,
- self.num_pos_pairs, self.num_pairs, self.curr_iter
- )
- mean_pn_dist = pn_result['dist'].mean(0)
- self._add_ranked_scalars(
- f'Embedding/ParNet distance {postfix}', mean_pn_dist,
- self.num_pos_pairs, self.num_pairs, self.curr_iter
- )
- # Embedding norm
- mean_hpm_embedding = embed_c.mean(0)
- mean_hpm_norm = mean_hpm_embedding.norm(dim=-1)
- self._add_ranked_scalars(
- f'Embedding/HPM norm {postfix}', mean_hpm_norm,
- self.k, self.pr * self.k, self.curr_iter
- )
- mean_pa_embedding = embed_p.mean(0)
- mean_pa_norm = mean_pa_embedding.norm(dim=-1)
- self._add_ranked_scalars(
- f'Embedding/PartNet norm {postfix}', mean_pa_norm,
- self.k, self.pr * self.k, self.curr_iter
- )
-
- def _add_ranked_scalars(
- self,
- main_tag: str,
- metric: torch.Tensor,
- num_pos: int,
- num_all: int,
- global_step: int
- ):
- rank = metric.argsort()
- pos_ile = 100 - (num_pos - 1) * 100 // num_all
- self.writer.add_scalars(main_tag, {
- '0%-ile': metric[rank[-1]],
- f'{100 - pos_ile}%-ile': metric[rank[-num_pos]],
- '50%-ile': metric[rank[num_all // 2 - 1]],
- f'{pos_ile}%-ile': metric[rank[num_pos - 1]],
- '100%-ile': metric[rank[0]]
- }, global_step)
-
- def predict_all(
- self,
- iters: tuple[int],
- dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
- ],
- dataloader_config: DataloaderConfiguration,
- ) -> dict[str, torch.Tensor]:
- # Transform data to features
- gallery_samples, probe_samples = self.transform(
- iters, dataset_config, dataset_selectors, dataloader_config
- )
- # Evaluate features
- accuracy = self.evaluate(gallery_samples, probe_samples)
-
- return accuracy
+ ), losses)), self.curr_iter)
def transform(
self,
@@ -466,9 +303,6 @@ class Model:
# Init models
model_hp: dict = self.hp.get('model', {}).copy()
- model_hp.pop('triplet_is_hard', True)
- model_hp.pop('triplet_is_mean', True)
- model_hp.pop('triplet_margins', None)
self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp)
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
@@ -509,54 +343,6 @@ class Model:
'feature': torch.cat((feature_c, feature_p)).view(-1)
}
- @staticmethod
- def evaluate(
- gallery_samples: dict[str, dict[str, Union[list, torch.Tensor]]],
- probe_samples: dict[str, dict[str, Union[list, torch.Tensor]]],
- num_ranks: int = 5
- ) -> dict[str, torch.Tensor]:
- conditions = list(probe_samples.keys())
- gallery_views_meta = gallery_samples['meta']['views']
- probe_views_meta = probe_samples[conditions[0]]['meta']['views']
- accuracy = {
- condition: torch.empty(
- len(gallery_views_meta), len(probe_views_meta), num_ranks
- )
- for condition in conditions
- }
-
- for condition in conditions:
- gallery_samples_c = gallery_samples[condition]
- (labels_g, _, views_g, features_g) = gallery_samples_c.values()
- views_g = np.asarray(views_g)
- probe_samples_c = probe_samples[condition]
- (labels_p, _, views_p, features_p, _) = probe_samples_c.values()
- views_p = np.asarray(views_p)
- accuracy_c = accuracy[condition]
- for (v_g_i, view_g) in enumerate(gallery_views_meta):
- gallery_view_mask = (views_g == view_g)
- f_g = features_g[gallery_view_mask]
- y_g = labels_g[gallery_view_mask]
- for (v_p_i, view_p) in enumerate(probe_views_meta):
- probe_view_mask = (views_p == view_p)
- f_p = features_p[probe_view_mask]
- y_p = labels_p[probe_view_mask]
- # Euclidean distance
- f_p_squared_sum = torch.sum(f_p ** 2, dim=1).unsqueeze(1)
- f_g_squared_sum = torch.sum(f_g ** 2, dim=1).unsqueeze(0)
- f_p_times_f_g_sum = f_p @ f_g.T
- dist = torch.sqrt(F.relu(
- f_p_squared_sum - 2*f_p_times_f_g_sum + f_g_squared_sum
- ))
- # Ranked accuracy
- rank_mask = dist.argsort(1)[:, :num_ranks]
- positive_mat = torch.eq(y_p.unsqueeze(1),
- y_g[rank_mask]).cumsum(1).gt(0)
- positive_counts = positive_mat.sum(0)
- total_counts, _ = dist.size()
- accuracy_c[v_g_i, v_p_i, :] = positive_counts / total_counts
- return accuracy
-
def _load_pretrained(
self,
iters: tuple[int],
@@ -629,8 +415,6 @@ class Model:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
- elif isinstance(m, (HorizontalPyramidMatching, PartNet)):
- nn.init.xavier_uniform_(m.fc_mat)
def _parse_dataset_config(
self,