summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py11
1 files changed, 2 insertions, 9 deletions
diff --git a/models/model.py b/models/model.py
index c0adc41..da3eac3 100644
--- a/models/model.py
+++ b/models/model.py
@@ -137,7 +137,7 @@ class Model:
sched_hp = self.hp.get('scheduler', {})
self.rgb_pn = RGBPartNet(self.train_size, self.in_channels, **model_hp)
# Try to accelerate computation using CUDA or others
- self.rgb_pn = self._accelerate(self.rgb_pn)
+ self.rgb_pn = self.rgb_pn.to(self.device)
self.optimizer = optim.Adam(self.rgb_pn.parameters(), **optim_hp)
self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, **sched_hp)
self.writer = SummaryWriter(self._log_name)
@@ -196,13 +196,6 @@ class Model:
self.writer.close()
break
- def _accelerate(self, model: nn.Module) -> nn.Module:
- if not self.disable_acc:
- if torch.cuda.device_count() > 1:
- model = nn.DataParallel(model)
- model = model.to(self.device)
- return model
-
def predict_all(
self,
iter_: int,
@@ -225,7 +218,7 @@ class Model:
model_hp = self.hp.get('model', {})
self.rgb_pn = RGBPartNet(ae_in_channels=self.in_channels, **model_hp)
# Try to accelerate computation using CUDA or others
- self.rgb_pn = self._accelerate(self.rgb_pn)
+ self.rgb_pn = self.rgb_pn.to(self.device)
self.rgb_pn.eval()
gallery_samples, probe_samples = [], {}