summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py70
1 files changed, 35 insertions, 35 deletions
diff --git a/models/model.py b/models/model.py
index 45067e6..f4a53bd 100644
--- a/models/model.py
+++ b/models/model.py
@@ -1,7 +1,7 @@
import copy
import os
import random
-from typing import Union, Optional
+from typing import Union, Optional, Tuple, List, Dict, Set
import numpy as np
import torch
@@ -59,14 +59,14 @@ class Model:
self.is_train: bool = True
self.in_channels: int = 3
- self.in_size: tuple[int, int] = (64, 48)
+ self.in_size: Tuple[int, int] = (64, 48)
self.pr: Optional[int] = None
self.k: Optional[int] = None
self.num_pairs: Optional[int] = None
self.num_pos_pairs: Optional[int] = None
- self._gallery_dataset_meta: Optional[dict[str, list]] = None
- self._probe_datasets_meta: Optional[dict[str, dict[str, list]]] = None
+ self._gallery_dataset_meta: Optional[Dict[str, List]] = None
+ self._probe_datasets_meta: Optional[Dict[str, Dict[str, List]]] = None
self._model_name: str = self.meta.get('name', 'RGB-GaitPart')
self._hp_sig: str = self._make_signature(self.hp)
@@ -118,8 +118,8 @@ class Model:
def fit_all(
self,
dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
+ dataset_selectors: Dict[
+ str, Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
],
dataloader_config: DataloaderConfiguration,
):
@@ -166,11 +166,11 @@ class Model:
train_dataset, dataloader_config
))
# Prepare for model, optimizer and scheduler
- model_hp: dict = self.hp.get('model', {}).copy()
+ model_hp: Dict = self.hp.get('model', {}).copy()
triplet_is_hard = model_hp.pop('triplet_is_hard', True)
triplet_is_mean = model_hp.pop('triplet_is_mean', True)
triplet_margins = model_hp.pop('triplet_margins', None)
- optim_hp: dict = self.hp.get('optimizer', {}).copy()
+ optim_hp: Dict = self.hp.get('optimizer', {}).copy()
ae_optim_hp = optim_hp.pop('auto_encoder', {})
hpm_optim_hp = optim_hp.pop('hpm', {})
pn_optim_hp = optim_hp.pop('part_net', {})
@@ -438,13 +438,13 @@ class Model:
def predict_all(
self,
- iters: tuple[int],
+ iters: Tuple[int],
dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
+ dataset_selectors: Dict[
+ str, Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
],
dataloader_config: DataloaderConfiguration,
- ) -> dict[str, torch.Tensor]:
+ ) -> Dict[str, torch.Tensor]:
# Transform data to features
gallery_samples, probe_samples = self.transform(
iters, dataset_config, dataset_selectors, dataloader_config
@@ -456,10 +456,10 @@ class Model:
def transform(
self,
- iters: tuple[int],
+ iters: Tuple[int],
dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
+ dataset_selectors: Dict[
+ str, Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
],
dataloader_config: DataloaderConfiguration,
is_train: bool = False
@@ -507,7 +507,7 @@ class Model:
return gallery_samples, probe_samples
- def _get_eval_sample(self, sample: dict[str, Union[list, torch.Tensor]]):
+ def _get_eval_sample(self, sample: Dict[str, Union[List, torch.Tensor]]):
label, condition, view, clip = sample.values()
with torch.no_grad():
feature_c, feature_p = self.rgb_pn(clip.to(self.device))
@@ -520,10 +520,10 @@ class Model:
@staticmethod
def evaluate(
- gallery_samples: dict[str, dict[str, Union[list, torch.Tensor]]],
- probe_samples: dict[str, dict[str, Union[list, torch.Tensor]]],
+ gallery_samples: Dict[str, Dict[str, Union[List, torch.Tensor]]],
+ probe_samples: Dict[str, Dict[str, Union[List, torch.Tensor]]],
num_ranks: int = 5
- ) -> dict[str, torch.Tensor]:
+ ) -> Dict[str, torch.Tensor]:
conditions = list(probe_samples.keys())
gallery_views_meta = gallery_samples['meta']['views']
probe_views_meta = probe_samples[conditions[0]]['meta']['views']
@@ -568,12 +568,12 @@ class Model:
def _load_pretrained(
self,
- iters: tuple[int],
+ iters: Tuple[int],
dataset_config: DatasetConfiguration,
- dataset_selectors: dict[
- str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
+ dataset_selectors: Dict[
+ str, Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
]
- ) -> dict[str, str]:
+ ) -> Dict[str, str]:
checkpoints = {}
for (iter_, total_iter, (condition, selector)) in zip(
iters, self.total_iters, dataset_selectors.items()
@@ -592,7 +592,7 @@ class Model:
dataset_config: DatasetConfiguration,
dataloader_config: DataloaderConfiguration,
is_train: bool = False
- ) -> tuple[DataLoader, dict[str, DataLoader]]:
+ ) -> Tuple[DataLoader, Dict[str, DataLoader]]:
dataset_name = dataset_config.get('name', 'CASIA-B')
if dataset_name == 'CASIA-B':
self.is_train = is_train
@@ -651,7 +651,7 @@ class Model:
dataset_config,
popped_keys=['root_dir', 'cache_on']
)
- config: dict = dataset_config.copy()
+ config: Dict = dataset_config.copy()
name = config.pop('name', 'CASIA-B')
if name == 'CASIA-B':
return CASIAB(**config, is_train=self.is_train)
@@ -665,7 +665,7 @@ class Model:
dataset: Union[CASIAB],
dataloader_config: DataloaderConfiguration
) -> DataLoader:
- config: dict = dataloader_config.copy()
+ config: Dict = dataloader_config.copy()
(self.pr, self.k) = config.pop('batch_size', (8, 16))
if self.is_train:
triplet_sampler = TripletSampler(dataset, (self.pr, self.k))
@@ -678,9 +678,9 @@ class Model:
def _batch_splitter(
self,
- batch: list[dict[str, Union[np.int64, str, torch.Tensor]]]
- ) -> tuple[dict[str, Union[list[str], torch.Tensor]],
- dict[str, Union[list[str], torch.Tensor]]]:
+ batch: List[Dict[str, Union[np.int64, str, torch.Tensor]]]
+ ) -> Tuple[Dict[str, Union[List[str], torch.Tensor]],
+ Dict[str, Union[List[str], torch.Tensor]]]:
"""
Disentanglement need two random conditions, this function will
split pr * k * 2 samples to 2 dicts each containing pr * k
@@ -694,8 +694,8 @@ class Model:
return default_collate(_batch[0]), default_collate(_batch[1])
def _make_signature(self,
- config: dict,
- popped_keys: Optional[list] = None) -> str:
+ config: Dict,
+ popped_keys: Optional[List] = None) -> str:
_config = config.copy()
if popped_keys:
for key in popped_keys:
@@ -703,16 +703,16 @@ class Model:
return self._gen_sig(list(_config.values()))
- def _gen_sig(self, values: Union[tuple, list, set, str, int, float]) -> str:
+ def _gen_sig(self, values: Union[Tuple, List, Set, str, int, float]) -> str:
strings = []
for v in values:
if isinstance(v, str):
strings.append(v)
- elif isinstance(v, (tuple, list)):
+ elif isinstance(v, (Tuple, List)):
strings.append(self._gen_sig(v))
- elif isinstance(v, set):
+ elif isinstance(v, Set):
strings.append(self._gen_sig(sorted(list(v))))
- elif isinstance(v, dict):
+ elif isinstance(v, Dict):
strings.append(self._gen_sig(list(v.values())))
else:
strings.append(str(v))