diff options
Diffstat (limited to 'models/model.py')
-rw-r--r-- | models/model.py | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/models/model.py b/models/model.py index 1dc0f23..4deced0 100644 --- a/models/model.py +++ b/models/model.py @@ -1,5 +1,5 @@ import os -from typing import Union, Optional +from typing import Union, Optional, Tuple, List import numpy as np import torch @@ -195,9 +195,9 @@ class Model: def _batch_splitter( self, - batch: list[dict[str, Union[np.int64, str, torch.Tensor]]] - ) -> tuple[dict[str, Union[list[str], torch.Tensor]], - dict[str, Union[list[str], torch.Tensor]]]: + batch: List[dict[str, Union[np.int64, str, torch.Tensor]]] + ) -> Tuple[dict[str, Union[List[str], torch.Tensor]], + dict[str, Union[List[str], torch.Tensor]]]: """ Disentanglement need two random conditions, this function will split pr * k * 2 samples to 2 dicts each containing pr * k @@ -212,7 +212,7 @@ class Model: def _make_signature(self, config: dict, - popped_keys: Optional[list] = None) -> str: + popped_keys: Optional[List] = None) -> str: _config = config.copy() if popped_keys: for key in popped_keys: @@ -220,12 +220,12 @@ class Model: return self._gen_sig(list(_config.values())) - def _gen_sig(self, values: Union[tuple, list, str, int, float]) -> str: + def _gen_sig(self, values: Union[Tuple, List, str, int, float]) -> str: strings = [] for v in values: if isinstance(v, str): strings.append(v) - elif isinstance(v, (tuple, list)): + elif isinstance(v, (Tuple, List)): strings.append(self._gen_sig(v)) else: strings.append(str(v)) |