summaryrefslogtreecommitdiff
path: root/models/rgb_part_net.py
diff options
context:
space:
mode:
Diffstat (limited to 'models/rgb_part_net.py')
-rw-r--r--models/rgb_part_net.py40
1 files changed, 27 insertions, 13 deletions
diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py
index 377c108..0ff8251 100644
--- a/models/rgb_part_net.py
+++ b/models/rgb_part_net.py
@@ -13,7 +13,7 @@ class RGBPartNet(nn.Module):
ae_in_channels: int = 3,
ae_feature_channels: int = 64,
f_a_c_p_dims: tuple[int, int, int] = (128, 128, 64),
- hpm_scales: tuple[int, ...] = (1, 2, 4, 8),
+ hpm_scales: tuple[int, ...] = (1, 2, 4),
hpm_use_avg_pool: bool = True,
hpm_use_max_pool: bool = True,
fpfe_feature_channels: int = 32,
@@ -32,7 +32,7 @@ class RGBPartNet(nn.Module):
fpfe_paddings, fpfe_halving, tfa_squeeze_ratio, tfa_num_part
)
self.hpm = HorizontalPyramidMatching(
- ae_in_channels, self.pn.tfa_in_channels, hpm_scales,
+ ae_feature_channels * 8, self.pn.tfa_in_channels, hpm_scales,
hpm_use_avg_pool, hpm_use_max_pool
)
@@ -54,38 +54,52 @@ class RGBPartNet(nn.Module):
# Step 1: Disentanglement
# t, n, c, h, w
num_frames = len(x_c1)
- f_c_c1, f_p_c1, f_p_c2 = [], [], []
+ # Decoded canonical features and Pose images
+ x_c_c1, x_p_c1 = [], []
+ # Features required to calculate losses
+ f_p_c1, f_p_c2 = [], []
xrecon_loss, cano_cons_loss = torch.zeros(1), torch.zeros(1)
for t2 in range(num_frames):
t1 = random.randrange(num_frames)
output = self.ae(x_c1[t1], x_c1[t2], x_c2[t2], y)
- (feature_t2, xrecon_loss_t2, cano_cons_loss_t2) = output
- (f_c_c1_t2, f_p_c1_t2, f_p_c2_t2) = feature_t2
- # Features for next step
- f_c_c1.append(f_c_c1_t2)
- f_p_c1.append(f_p_c1_t2)
+ (x_c1_t2, f_p_t2, losses) = output
+
+ # Decoded features or image
+ (x_c_c1_t2, x_p_c1_t2) = x_c1_t2
+ # Canonical Features for HPM
+ x_c_c1.append(x_c_c1_t2)
+ # Pose image for Part Net
+ x_p_c1.append(x_p_c1_t2)
+
# Losses per time step
+ # Used in pose similarity loss
+ (f_p_c1_t2, f_p_c2_t2) = f_p_t2
+ f_p_c1.append(f_p_c1_t2)
f_p_c2.append(f_p_c2_t2)
+ # Cross reconstruction loss and canonical loss
+ (xrecon_loss_t2, cano_cons_loss_t2) = losses
xrecon_loss += xrecon_loss_t2
cano_cons_loss += cano_cons_loss_t2
- f_c_c1 = torch.stack(f_c_c1)
- f_p_c1 = torch.stack(f_p_c1)
+
+ x_c_c1 = torch.stack(x_c_c1)
+ x_p_c1 = torch.stack(x_p_c1)
# Step 2.a: HPM & Static Gait Feature Aggregation
# t, n, c, h, w
- x_c = self.hpm(f_c_c1)
+ x_c = self.hpm(x_c_c1)
# p, t, n, c
x_c = x_c.mean(dim=1)
# p, n, c
# Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation)
# t, n, c, h, w
- x_p = self.pn(f_p_c1)
+ x_p = self.pn(x_p_c1)
# p, n, c
# Step 3: Cat feature map together and calculate losses
- x = torch.cat(x_c, x_p)
+ x = torch.cat([x_c, x_p])
# Losses
+ f_p_c1 = torch.stack(f_p_c1)
f_p_c2 = torch.stack(f_p_c2)
pose_sim_loss = self.pose_sim_loss(f_p_c1, f_p_c2)
cano_cons_loss /= num_frames