diff options
Diffstat (limited to 'models/rgb_part_net.py')
-rw-r--r-- | models/rgb_part_net.py | 15 |
1 files changed, 10 insertions, 5 deletions
diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py index d3f8ade..d5eb619 100644 --- a/models/rgb_part_net.py +++ b/models/rgb_part_net.py @@ -8,6 +8,7 @@ from models.auto_encoder import AutoEncoder class RGBPartNet(nn.Module): def __init__( self, + num_class: int, ae_in_channels: int = 3, ae_in_size: tuple[int, int] = (64, 48), ae_feature_channels: int = 64, @@ -20,11 +21,15 @@ class RGBPartNet(nn.Module): self.image_log_on = image_log_on self.ae = AutoEncoder( - ae_in_channels, ae_in_size, ae_feature_channels, f_a_c_p_dims + num_class, + ae_in_channels, + ae_in_size, + ae_feature_channels, + f_a_c_p_dims ) - def forward(self, x_c1, x_c2=None): - losses, features, images = self._disentangle(x_c1, x_c2) + def forward(self, x_c1, x_c2=None, y=None): + losses, features, images = self._disentangle(x_c1, x_c2, y) if self.training: losses = torch.stack(losses) @@ -32,11 +37,11 @@ class RGBPartNet(nn.Module): else: return features - def _disentangle(self, x_c1_t2, x_c2_t2=None): + def _disentangle(self, x_c1_t2, x_c2_t2=None, y=None): n, t, c, h, w = x_c1_t2.size() if self.training: x_c1_t1 = x_c1_t2[:, torch.randperm(t), :, :, :] - ((f_a_, f_c_, f_p_), losses) = self.ae(x_c1_t2, x_c1_t1, x_c2_t2) + ((f_a_, f_c_, f_p_), losses) = self.ae(x_c1_t2, x_c1_t1, x_c2_t2, y) f_a = f_a_.view(n, t, -1) f_c = f_c_.view(n, t, -1) f_p = f_p_.view(n, t, -1) |