summaryrefslogtreecommitdiff
path: root/models
diff options
context:
space:
mode:
Diffstat (limited to 'models')
-rw-r--r--models/hpm.py4
-rw-r--r--models/layers.py18
-rw-r--r--models/model.py10
3 files changed, 15 insertions, 17 deletions
diff --git a/models/hpm.py b/models/hpm.py
index f387154..1773f56 100644
--- a/models/hpm.py
+++ b/models/hpm.py
@@ -1,5 +1,3 @@
-from typing import Tuple
-
import torch
import torch.nn as nn
from torchvision.models import resnet50
@@ -10,7 +8,7 @@ from models.layers import HorizontalPyramidPooling
class HorizontalPyramidMatching(nn.Module):
def __init__(
self,
- scales: Tuple[int] = (1, 2, 4, 8),
+ scales: tuple[int, ...] = (1, 2, 4, 8),
out_channels: int = 256,
use_avg_pool: bool = False,
**kwargs
diff --git a/models/layers.py b/models/layers.py
index 9b17205..cba6e47 100644
--- a/models/layers.py
+++ b/models/layers.py
@@ -1,8 +1,8 @@
-from typing import Union, Tuple
+from typing import Union
import torch
-import torch.nn.functional as F
import torch.nn as nn
+import torch.nn.functional as F
class BasicConv2d(nn.Module):
@@ -10,7 +10,7 @@ class BasicConv2d(nn.Module):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, Tuple[int, int]],
+ kernel_size: Union[int, tuple[int, int]],
**kwargs
):
super().__init__()
@@ -29,7 +29,7 @@ class VGGConv2d(BasicConv2d):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, Tuple[int, int]] = 3,
+ kernel_size: Union[int, tuple[int, int]] = 3,
padding: int = 1,
**kwargs
):
@@ -47,7 +47,7 @@ class BasicConvTranspose2d(nn.Module):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, Tuple[int, int]],
+ kernel_size: Union[int, tuple[int, int]],
**kwargs
):
super().__init__()
@@ -66,7 +66,7 @@ class DCGANConvTranspose2d(BasicConvTranspose2d):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, Tuple[int, int]] = 4,
+ kernel_size: Union[int, tuple[int, int]] = 4,
stride: int = 2,
padding: int = 1,
is_last_layer: bool = False,
@@ -88,7 +88,7 @@ class FocalConv2d(BasicConv2d):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, Tuple[int, int]],
+ kernel_size: Union[int, tuple[int, int]],
halving: int,
**kwargs
):
@@ -108,7 +108,7 @@ class BasicConv1d(nn.Module):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, Tuple[int]],
+ kernel_size: Union[int, tuple[int]],
**kwargs
):
super(BasicConv1d, self).__init__()
@@ -124,7 +124,7 @@ class HorizontalPyramidPooling(BasicConv2d):
self,
in_channels: int,
out_channels: int,
- kernel_size: Union[int, Tuple[int, int]] = 1,
+ kernel_size: Union[int, tuple[int, int]] = 1,
use_avg_pool: bool = False,
**kwargs
):
diff --git a/models/model.py b/models/model.py
index 369d6c2..cb0e756 100644
--- a/models/model.py
+++ b/models/model.py
@@ -1,4 +1,4 @@
-from typing import List, Dict, Union, Tuple
+from typing import Union
import torch
from torch.utils.data.dataloader import default_collate
@@ -7,15 +7,15 @@ from torch.utils.data.dataloader import default_collate
class Model:
def __init__(
self,
- batch_size: Tuple[int, int]
+ batch_size: tuple[int, int]
):
(self.pr, self.k) = batch_size
def _batch_splitter(
self,
- batch: List[Dict[str, Union[str, torch.Tensor]]]
- ) -> List[Tuple[Dict[str, List[Union[str, torch.Tensor]]],
- Dict[str, List[Union[str, torch.Tensor]]]]]:
+ batch: list[dict[str, Union[str, torch.Tensor]]]
+ ) -> list[tuple[dict[str, list[Union[str, torch.Tensor]]],
+ dict[str, list[Union[str, torch.Tensor]]]]]:
"""
Disentanglement cannot be processed on different subjects at the
same time, we need to load `pr` subjects one by one. The batch