summaryrefslogtreecommitdiff
path: root/models
diff options
context:
space:
mode:
Diffstat (limited to 'models')
-rw-r--r--models/auto_encoder.py2
-rw-r--r--models/rgb_part_net.py13
2 files changed, 8 insertions, 7 deletions
diff --git a/models/auto_encoder.py b/models/auto_encoder.py
index 7c1f7ef..5e7558b 100644
--- a/models/auto_encoder.py
+++ b/models/auto_encoder.py
@@ -128,7 +128,7 @@ class AutoEncoder(nn.Module):
BasicLinear(f_c_dim, num_class)
)
- def forward(self, x_c1_t1, x_c1_t2, x_c2_t2, y=None):
+ def forward(self, x_c1_t2, x_c1_t1=None, x_c2_t2=None, y=None):
# x_c1_t2 is the frame for later module
(f_a_c1_t2, f_c_c1_t2, f_p_c1_t2) = self.encoder(x_c1_t2)
diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py
index 3037da0..456695d 100644
--- a/models/rgb_part_net.py
+++ b/models/rgb_part_net.py
@@ -51,10 +51,12 @@ class RGBPartNet(nn.Module):
def fc(self, x):
return x @ self.fc_mat
- def forward(self, x_c1, x_c2, y=None):
+ def forward(self, x_c1, x_c2=None, y=None):
# Step 0: Swap batch_size and time dimensions for next step
# n, t, c, h, w
- x_c1, x_c2 = x_c1.transpose(0, 1), x_c2.transpose(0, 1)
+ x_c1 = x_c1.transpose(0, 1)
+ if self.training:
+ x_c2 = x_c2.transpose(0, 1)
# Step 1: Disentanglement
# t, n, c, h, w
@@ -84,7 +86,7 @@ class RGBPartNet(nn.Module):
else:
return x
- def _disentangle(self, x_c1, x_c2, y):
+ def _disentangle(self, x_c1, x_c2=None, y=None):
num_frames = len(x_c1)
# Decoded canonical features and Pose images
x_c_c1, x_p_c1 = [], []
@@ -94,7 +96,7 @@ class RGBPartNet(nn.Module):
xrecon_loss, cano_cons_loss = [], []
for t2 in range(num_frames):
t1 = random.randrange(num_frames)
- output = self.ae(x_c1[t1], x_c1[t2], x_c2[t2], y)
+ output = self.ae(x_c1[t2], x_c1[t1], x_c2[t2], y)
(x_c1_t2, f_p_t2, losses) = output
# Decoded features or image
@@ -127,8 +129,7 @@ class RGBPartNet(nn.Module):
else: # evaluating
for t2 in range(num_frames):
- t1 = random.randrange(num_frames)
- x_c1_t2 = self.ae(x_c1[t1], x_c1[t2], x_c2[t2])
+ x_c1_t2 = self.ae(x_c1[t2])
# Decoded features or image
(x_c_c1_t2, x_p_c1_t2) = x_c1_t2
# Canonical Features for HPM