summaryrefslogtreecommitdiff
path: root/utils
diff options
context:
space:
mode:
Diffstat (limited to 'utils')
-rw-r--r--utils/sampler.py35
1 files changed, 31 insertions, 4 deletions
diff --git a/utils/sampler.py b/utils/sampler.py
index 0977f94..581d7a2 100644
--- a/utils/sampler.py
+++ b/utils/sampler.py
@@ -15,7 +15,18 @@ class TripletSampler(data.Sampler):
):
super().__init__(data_source)
self.metadata_labels = data_source.metadata['labels']
+ metadata_conditions = data_source.metadata['conditions']
+ self.subsets = {}
+ for condition in metadata_conditions:
+ pre, _ = condition.split('-')
+ if self.subsets.get(pre, None) is None:
+ self.subsets[pre] = []
+ self.subsets[pre].append(condition)
+ self.num_subsets = len(self.subsets)
+ self.num_seq = {pre: len(seq) for (pre, seq) in self.subsets.items()}
+ self.min_num_seq = min(self.num_seq.values())
self.labels = data_source.labels
+ self.conditions = data_source.conditions
self.length = len(self.labels)
self.indexes = np.arange(0, self.length)
(self.pr, self.k) = batch_size
@@ -26,15 +37,31 @@ class TripletSampler(data.Sampler):
# Sample pr subjects by sampling labels appeared in dataset
sampled_subjects = random.sample(self.metadata_labels, k=self.pr)
for label in sampled_subjects:
- clips_from_subject = self.indexes[self.labels == label].tolist()
+ mask = self.labels == label
+ # Fix unbalanced datasets
+ if self.num_subsets > 1:
+ condition_mask = np.zeros(self.conditions.shape, dtype=bool)
+ for num, conditions_ in zip(
+ self.num_seq.values(), self.subsets.values()
+ ):
+ if num > self.min_num_seq:
+ conditions = random.sample(
+ conditions_, self.min_num_seq
+ )
+ else:
+ conditions = conditions_
+ for condition in conditions:
+ condition_mask |= self.conditions == condition
+ mask &= condition_mask
+ clips = self.indexes[mask].tolist()
# Sample k clips from the subject without replacement if
# have enough clips, k more clips will sampled for
# disentanglement
k = self.k * 2
- if len(clips_from_subject) >= k:
- _sampled_indexes = random.sample(clips_from_subject, k=k)
+ if len(clips) >= k:
+ _sampled_indexes = random.sample(clips, k=k)
else:
- _sampled_indexes = random.choices(clips_from_subject, k=k)
+ _sampled_indexes = random.choices(clips, k=k)
sampled_indexes += _sampled_indexes
yield sampled_indexes