summaryrefslogtreecommitdiff
path: root/utils
diff options
context:
space:
mode:
Diffstat (limited to 'utils')
-rw-r--r--utils/configuration.py20
-rw-r--r--utils/dataset.py28
-rw-r--r--utils/sampler.py5
3 files changed, 26 insertions, 27 deletions
diff --git a/utils/configuration.py b/utils/configuration.py
index f3ae0b3..455abe8 100644
--- a/utils/configuration.py
+++ b/utils/configuration.py
@@ -1,4 +1,4 @@
-from typing import TypedDict, Optional, Union
+from typing import TypedDict, Optional, Union, Tuple, Dict
from utils.dataset import ClipClasses, ClipConditions, ClipViews
@@ -15,34 +15,34 @@ class DatasetConfiguration(TypedDict):
train_size: int
num_sampled_frames: int
discard_threshold: int
- selector: Optional[dict[str, Union[ClipClasses, ClipConditions, ClipViews]]]
+ selector: Optional[Dict[str, Union[ClipClasses, ClipConditions, ClipViews]]]
num_input_channels: int
- frame_size: tuple[int, int]
+ frame_size: Tuple[int, int]
cache_on: bool
class DataloaderConfiguration(TypedDict):
- batch_size: tuple[int, int]
+ batch_size: Tuple[int, int]
num_workers: int
pin_memory: bool
class HyperparameterConfiguration(TypedDict):
ae_feature_channels: int
- f_a_c_p_dims: tuple[int, int, int]
- hpm_scales: tuple[int, ...]
+ f_a_c_p_dims: Tuple[int, int, int]
+ hpm_scales: Tuple[int, ...]
hpm_use_avg_pool: bool
hpm_use_max_pool: bool
fpfe_feature_channels: int
- fpfe_kernel_sizes: tuple[tuple, ...]
- fpfe_paddings: tuple[tuple, ...]
- fpfe_halving: tuple[int, ...]
+ fpfe_kernel_sizes: Tuple[Tuple, ...]
+ fpfe_paddings: Tuple[Tuple, ...]
+ fpfe_halving: Tuple[int, ...]
tfa_squeeze_ratio: int
tfa_num_parts: int
embedding_dims: int
triplet_margin: float
lr: int
- betas: tuple[float, float]
+ betas: Tuple[float, float]
class ModelConfiguration(TypedDict):
diff --git a/utils/dataset.py b/utils/dataset.py
index cd8b0f1..ea678fb 100644
--- a/utils/dataset.py
+++ b/utils/dataset.py
@@ -1,7 +1,7 @@
import os
import random
import re
-from typing import Optional, NewType, Union
+from typing import Optional, NewType, Union, List, Tuple, Set, Dict
import numpy as np
import torch
@@ -11,9 +11,9 @@ from sklearn.preprocessing import LabelEncoder
from torch.utils import data
from tqdm import tqdm
-ClipClasses = NewType('ClipClasses', set[str])
-ClipConditions = NewType('ClipConditions', set[str])
-ClipViews = NewType('ClipViews', set[str])
+ClipClasses = NewType('ClipClasses', Set[str])
+ClipConditions = NewType('ClipConditions', Set[str])
+ClipViews = NewType('ClipViews', Set[str])
class CASIAB(data.Dataset):
@@ -26,11 +26,11 @@ class CASIAB(data.Dataset):
train_size: int = 74,
num_sampled_frames: int = 30,
discard_threshold: int = 15,
- selector: Optional[dict[
+ selector: Optional[Dict[
str, Union[ClipClasses, ClipConditions, ClipViews]
]] = None,
num_input_channels: int = 3,
- frame_size: tuple[int, int] = (64, 32),
+ frame_size: Tuple[int, int] = (64, 32),
cache_on: bool = False
):
"""
@@ -75,15 +75,15 @@ class CASIAB(data.Dataset):
self.views: np.ndarray[np.str_]
# Labels, classes, conditions and views in dataset,
# set of three attributes above
- self.metadata: dict[str, list[np.int64, str]]
+ self.metadata: Dict[str, List[np.int64, str]]
# Dictionaries for indexing frames and frame names by clip name
# and chip path when cache is on
- self._cached_clips_frame_names: Optional[dict[str, list[str]]] = None
- self._cached_clips: Optional[dict[str, torch.Tensor]] = None
+ self._cached_clips_frame_names: Optional[Dict[str, List[str]]] = None
+ self._cached_clips: Optional[Dict[str, torch.Tensor]] = None
# Video clip directory names
- self._clip_names: list[str] = []
+ self._clip_names: List[str] = []
clip_names = sorted(os.listdir(self._root_dir))
if self._is_train:
@@ -170,7 +170,7 @@ class CASIAB(data.Dataset):
def __getitem__(
self,
index: int
- ) -> dict[str, Union[np.int64, str, torch.Tensor]]:
+ ) -> Dict[str, Union[np.int64, str, torch.Tensor]]:
label = self.labels[index]
condition = self.conditions[index]
view = self.views[index]
@@ -215,8 +215,8 @@ class CASIAB(data.Dataset):
def _load_cached_video(
self,
clip: torch.Tensor,
- frame_names: list[str],
- sampled_frame_names: list[str]
+ frame_names: List[str],
+ sampled_frame_names: List[str]
) -> torch.Tensor:
# Mask the original clip when it is long enough
if len(frame_names) >= self._num_sampled_frames:
@@ -246,7 +246,7 @@ class CASIAB(data.Dataset):
return clip
def _sample_frames(self, clip_path: str,
- is_caching: bool = False) -> list[str]:
+ is_caching: bool = False) -> List[str]:
if self._cache_on:
if is_caching:
# Sort frame in advance for loading convenience
diff --git a/utils/sampler.py b/utils/sampler.py
index cdf1984..0977f94 100644
--- a/utils/sampler.py
+++ b/utils/sampler.py
@@ -1,6 +1,5 @@
import random
-from collections.abc import Iterator
-from typing import Union
+from typing import Union, Tuple, Iterator
import numpy as np
from torch.utils import data
@@ -12,7 +11,7 @@ class TripletSampler(data.Sampler):
def __init__(
self,
data_source: Union[CASIAB],
- batch_size: tuple[int, int]
+ batch_size: Tuple[int, int]
):
super().__init__(data_source)
self.metadata_labels = data_source.metadata['labels']